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. The muscarinic receptor response to acetylcholine regulates the hippocampal-related learning,

. memory, neural plasticity and the production and processing of the pro-nerve growth factor (proNGF)
by hippocampal cells. The development and progression of diabetes generate a mild cognitive
impairment reducing the functions of the septo-hippocampal cholinergic circuitry, depressing neural
plasticity and inducing proNGF accumulation in the brain. Here we demonstrate, in a rat model of
early type-1 diabetes, that a physical therapy, the electroacupuncture, counteracts the diabetes-
induced deleterious effects on hippocampal physiology by ameliorating hippocampal-related memory

© functions; recovering the impaired long-term potentiation at the dentate gyrus (DG-LTP) and the
lowered expression of the vesicular glutamate transporter 1; normalizing the activity-dependent
release of proNGF in diabetic rat hippocampus. Electroacupuncture exerted its therapeutic effects by

. regulating the expression and activity of M1- and M2-acetylcholine muscarinic receptors subtypes in

. the dentate gyrus of hippocampus. Our results suggest that a physical therapy based on repetitive

. sensory stimulation could promote hippocampal neural activity, neuronal metabolism and functions,

. and conceivably improve the diabetes-induced cognitive impairment. Our data can support the setup of

. therapeutic protocols based on a better integration between physical therapies and pharmacology for

. the cure of diabetes-associated neurodegeneration and possibly for Alzheimer’s disease.

Dysfunctions in hippocampus-related behaviour and neural plasticity characterize both Alzheimer’s dis-
. ease and diabetic encephalopathy'-* that share common hallmarks, such as accumulation of beta-amyloid, of
. hyper-phosphorylated tau*® and of the pro-nerve growth factor (proNGF) in the brain®’. Basal forebrain cho-
: linergic neurons (BFCN) in the medial septum project to the hippocampus, regulating the activity of its internal
© excitatory and inhibitory circuitries, as well as those of its external inputs®. The BECNs activity modulates hip-
. pocampal plasticity and regulates the production, secretion and processing of proNGF by hippocampal cells® 10
: providing a sort of “on demand” supply of the pro-neurotrophin. This in turn regulates remote BECN metabo-
. lism!! but also directly influences hippocampal neurons survival'> 13, functions and plasticity'*.
: The pro-apoptotic or pro-neurotrophic action of proNGF depends on the balance among different possible

receptor complexes'® and on the activity of the extracellular proteases cascade responsible for proNGF conver-
. sion into the neurotrophic mature NGF (mNGF)!°. We recently demonstrated a prevalence of proNGF and a
. lower mNGF/proNGF ratio, in the brain of early diabetic rats®. ProNGF is also predominant in the brain of
. Alzheimer’s patients’, indicating that it could reliably participate in the generation of neuronal sufferance and
: cognitive impairment.
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Figure 1. Electroacupuncture partially rescues diabetes-induced hippocampal cell loss. (A) Study design.

(B) Blood glucose and (C) body weight measured 1 and 4 weeks after STZ treatment (mean & SEM; n =25 for
each group). Repeated measures two-way ANOVA followed by Bonferroni multiple comparisons (P values
shown in figure). (D) Representative picture of the dentate gyrus after Hoechst nuclear staining. Boxes highlight
the regions were the analysis, shown in panels E-G, was performed. (E-G) Quantitative stereological analysis
of the total number of cells and nuclear morphometric analysis in the dentate gyrus (DG; hilus and granular
layer) and CA3 pyramidal layer of the rostral septal region of the hippocampus. In the upper part of the panels,
representative pictures for each of the experimental groups. In the lower part of the panels, graphs depicting the
results of the cell count and nuclear size analysis (means £ SEM of the estimated total cell number, n =4 animals
for each experimental group). One-way ANOVA followed by Bonferroni multiple comparisons (P values shown
in figure).

A physical therapy, the electroacupuncture (EA), based on repetitive and controlled stimulation of sensory
afferents, regulates brain NGF content in diabetic rats®. It is known that acupuncture, as well as physical exercise,
which shares with electroacupuncture common neurophysiological substrates'®, could regulate brain activity,
not only in pain-related brain areas!” but also in the limbic system!8. Electroacupuncture positively affects hip-
pocampal neurogenesis' and counteracts hippocampus-related cognitive deficits in diabetic rats®®. Nevertheless,
the mechanism(s) underlying these electroacupuncture effects, on hippocampal physiology, are still largely
unexplored.

Type-1 diabetes could early affect cognitive performance in young people, generating a mild cognitive deficit
that in turn could progress in diabetic encephalopathy>*2!. Our work aimed at studying the impact of early
type-1 diabetes and electroacupuncture on activity-regulated hippocampal functions, namely the generation of
LTP at dentate gyrus (DG-LTP) and the release and extracellular processing of proNGE. We also explored the
mechanistic hypothesis that electroacupuncture corrects the diabetes-induced dysregulation in DG-LTP and
proNGF release by acting on the hippocampal muscarinic responsivity.

Results
Diabetes-induced hippocampal cell loss and decrease in nuclear size was reversed by electroac-
upuncture. We used a widely accepted animal model of type 1 diabetes?>. The study design is depicted at
Fig. 1A. We checked the establishment of diabetes by analysing blood glucose concentration and body weight
over 4 weeks (Fig. 1B,C). Streptozotocin (STZ) increased blood glucose levels (Fig. 1B). These values persisted
significantly high also in the STZ+EA group, suggesting that electroacupuncture did not affect the overall glucose
metabolism. Rats’ body weight significantly decreased (Fig. 1C) in both STZ and STZ+4EA groups compared to
controls.

Diabetes induces cell loss in the hippocampus®. We explored such feature in three hippocampal areas, to verify
whether electroacupuncture was able to counteract the diabetes-induced effects. We evaluated by stereological
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Figure 2. Electroacupuncture improves diabetes-induced impairments in memory, LTP and glutamatergic
transmission in the dentate gyrus. (A-E) Effects of electroacupuncture (EA) treatment in diabetic animals (STZ)
tested in the Morris Water Maze. Latencies to reach the platform in Place 1 (A) and Place 2 (C) and distances
swam in the previously rewarded (platform) quadrant in Short-Term Probe 1 (Probe ST1; B), in Short-Term
Probe 2 (Probe ST2; D), and in Long-Term Probe (Probe LT; E) are depicted (means + SEM; n=7 for each
experimental group). Repeated measures two-way ANOVA followed by Bonferroni multiple comparison test

(P values shown in figure). (F-G) Long-term potentiation at perforant-pathway (DG-LTP) in absence (F) or
presence (G) of the muscarinic agonist Carbachol (CCh) in the superfusion bath. Field excitatory postsynaptic
potentials (fEPSP) were recorded and expressed as the percentage of the pre-tetanus baseline. Changes in fEPSP
slopes before and 60 min after the induction of LTP by high-frequency stimulation (HFS) of the medial perforant
pathway (black arrow) are shown (means 4+ SEM; n = 8 for each experimental group). The insets represent
typical fEPSP recordings; calibration bars: 0.5mV, 10 ms. The average of DG-LTP magnitude 50-60 min after
HES is presented on the right side of the panels (median + interquartile range, whiskers: min. and max.). One-
way ANOVA and Bonferroni multiple comparison (P values shown in figure). (H) Representative images of
vGlutl immunolocalization in the dentate gyrus of control (ctr), STZ and STZ+EA treated rats. Abbreviations:
ML-molecular layer, GL-granular layer, HL-hilus, PCL-pyramidal cell layer. (I) Mean pixel intensity of vGlut1
immunofluorescence in the molecular layer, granular cell layer and hilus of the DG and the pyramidal cell layer
of the CA3 area (means &= SEM; n = 8 fields, 4 animals for each experimental group). One-way ANOVA followed
by Bonferroni multiple comparison test, P values shown in figure. The cartoon illustrates the hippocampal
glutamatergic circuitry where immunofluorescence analysis was performed.
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analysis the total number of cells in the granular layer (GL) and hilus (HL) of the DG and in the CA3-pyramidal
cell layer (PCL) (Supplementary Fig. S1A,B), counting Hoechst-labelled nuclei (Fig. 1D-G). STZ overall reduced
the number of total cells (Fig. IE-G), which recovered after electroacupuncture treatment. Reduced number of
Hoechst-labelled nuclei was accompanied by alterations in nuclear shape and staining texture, a common feature
in all considered regions. The highly compact GL structure was looser in diabetic rats compared to controls, with
surviving cells displaying particularly enlarged nuclei (Fig. 1IE-G). Mean nuclear size returned to control levels
after electroacupuncture treatment (Fig. 1IE-G).

To assess whether the observed changes in hippocampal total cell number could reflect similar changes in
neurons, we counted the number of NeuN* and NeuN~ cells in all three areas (Supplementary Fig. S1A,B). The
number of neurons (NeuN™) in the GL decreased after streptozotocin and recovered in the STZ+ EA group
(Supplementary Fig. S1C,D). The number of NeuN~ cells decreased in the GL in both the STZ and STZ+EA
groups (Supplementary Fig. S1C,D). In the HL, both NeuN" and NeuN~ cell number was lower in the STZ
group compared to controls (Supplementary Fig. S1C,E), with only the number of NeuN~ cells recovering in
the STZ+EA group. In the PCL, NeuN™ and NeuN~ cell number decreased after streptozotocin (Supplementary
Fig. SIEG) and only the number of NeuN™ cells normalized after electroacupuncture. Thus, the hippocampus
was overall affected by cell loss, particularly neurons, in the DG and CA3 areas, at an early stage of diabetes
development. This could be the result of increased apoptosis, as indirectly indicated by nuclear morphology,
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Figure 3. Diabetes and electroacupuncture treatment differentially modulate proNGF expression in the
hippocampus. (A) Representative images of proNGF immunolocalization in the dentate gyrus (DG) of the
hippocampus. Insets: Higher magnifications showing proNGF immunolocalization within DG granule cells.
(B-D) Mean pixel intensity and the number of proNGF immunopositive (proNGF*) cells in different areas of
the DG (means £ SEM; n = 8 fields, 4 animals for each experimental group). One-way ANOVA followed by
Bonferroni multiple comparison, P values shown in figure. (E) Cartoon depicting the experimental procedures
performed in superfusion experiments and the possible carbachol (CCh) action on proNGF release by
hippocampal cells. (F) Representative Western blot (WB) illustrating the time-course of carbachol-stimulated
release of the 50 kDa proNGF from hippocampal slices of streptozotocin-treated rats. (G) Carbachol-stimulated
proNGF release from hippocampal slices. Densitometry analysis of the WB (cropped representatives shown

in the upper side of the panel; full-length blots are shown in online Supplementary material) illustrates the
differences in carbachol-stimulated proNGF release among the different experimental groups. Data are
expressed as percentage of the respective baselines (median + interquartile range, whiskers: min. and max.).
Two-way ANOVA followed by Bonferroni multiple comparisons, P values shown in figure. (H) WB of
hippocampus superfusates after NGF-immunoprecipitation, revealing the presence of a 25 and a faint 34kDa
proNGF bands. (I) CCh-stimulated 25/34kDa proNGF release from hippocampal slices measured by proNGF
ELISA. Data (means & SEM; n =6 for each experimental group), represent the percentage of the respective
baseline. Repeated-measure ANOVA followed by Bonferroni multiple comparison; P values shown in figure.
Abbreviations: ML-molecular layer, GL-granular layer, HL-hilus, b-baseline, w/o-washout.

and of decreased DG neurogenesis, as indicated by our preliminary evidences on the decrease of doublecortin
(DCX)-stained cells in the diabetic DG (Supplementary Fig. S2A,B). The rescuing effects of electroacupunc-
ture were evident on cell morphology (i.e. nucleus size), on the total cell number and also on the number of
DCX-expressing cells in the DG (Supplementary Fig. S2A,B).

Electroacupuncture improved diabetes-induced impairments in memory, LTP and vGlutl con-
tentin the dentate gyrus. Electroacupuncture may improve hippocampus-related cognitive deficits®’. We
investigated, by the Morris water maze (MWM) the early diabetes-induced memory deficits and verified whether
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Baseline (Figure 2)
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Table 1. Summary of DG-LTP data presented in Fig. 2, 4, 5 and pairwise comparisons between different
groups. Data, presented as mean £ S.E.M., are percentage increase in fEPSP amplitude, having set the pre-
tetanus baseline at 100%. Statistics: Intra-experiment: One-way ANOVA followed by Bonferroni multiple
comparison test. *P < 0.05 vs controls; §P < 0.05 vs STZ (comparisons within the same row). Inter-experiment
1: Unpaired t-test. #P < 0.05 +carbachol vs —carbachol in the same experimental group (comparisons: row 2 vs
row 1; row 4 vs row 3; row 6 vs row 5). Inter-experiment 2: Unpaired t-test. +P < 0.05 4-antagonist vs -antagonist
(baseline) in the same experimental group (comparisons: row 3 vs row 1; row 5 vs row 1; row 4 vs row 2; row 6
vs row 2). n =8 indicates the number rats. One hippocampal slice per animal was used for recordings.

electroacupuncture was able to counteract the eventual amnesic impairment. On day 1, in the Place 1, both STZ
and STZ+EA groups showed higher latencies to reach the platform in comparison to controls (Fig. 2A; details
on statistics at online Supplementary Table 2), indicating that streptozotocin administration induced a signif-
icant impairment not reversed by electroacupuncture. Consistently, in the short-term probe 1 phase, STZ and
STZ+EA groups swam less than controls in the previously rewarded (platform) quadrant (Probe ST1; Fig. 2B).
Otherwise, on day 2, in the Place 2, STZ group showed higher latencies in comparison to both ctr and STZ+EA
groups (Fig. 2C; Supplementary Table 2), indicating that the streptozotocin-induced impairment was still pres-
ent in the second testing day. At this stage, STZ+EA group did not show significant amnesic impairment and
exhibited latencies not different from those of the controls (Fig. 2C). In the Probe ST2, diabetic rats swam less in
the previously rewarded quadrant in comparison to both ctr and STZ+EA groups (Fig. 2D). Finally, on day 3,
in the long-term probe phase, STZ group continued to swim less in the previously rewarded quadrant (Fig. 2E).
This finding indicated that the diabetes-induced memory impairment was still present at long term, although
ameliorated compared to the previous day, so that the STZ group performance was not different by the one of the
STZ+EA group (Fig. 2E). Once more, STZ+EA group showed a long-term memory performance not different
by ctr group (Fig. 2E), indicating that electroacupuncture treatment succeeded in counteracting the impairing
diabetes effects.

Synaptic plasticity and the hippocampal LTP are major cellular mechanisms underlying learning and memory?.
We explored the possibility that diabetes may alter the excitatory circuits that drive the hippocampal func-
tions. DG-LTP data and their pairwise comparisons are summarized in Table 1. As reported?, the magnitude
of DG-LTP was lowered by diabetes (Fig. 2F; Table 1). Notably, electroacupuncture fully restored DG-LTP in
diabetic rats (Fig. 2F; Table 1), indicating that electroacupuncture rescuing effects on behavioural functions was
associated with a recovery in hippocampal synaptic plasticity. As a first assessment on the role of muscarinic
neurotransmission in our model, we evaluated long-term potentiation at dentate gyrus (DG-LTP) in the presence
of the muscarinic agonist carbachol (100 nM; Fig. 2G), that is known to facilitate excitatory neurotransmission
in the hippocampus®. Carbachol enhanced the DG-LTP in control rats (Table 1, row 2 vs row 1). Application of
carbachol slightly ameliorated the diabetes-induced decrease in DG-LTP (Table 1, row 2 vs row 1). Surprisingly,
the presence of carbachol, in the superfusion bath, diminished DG-LTP in the STZ+EA group (Table 1, row
2 vs row 1), which was not different from the one measured in the STZ group (Fig. 2G; Table 1, row 2). These
findings suggest that in diabetic rats the electroacupuncture effects on hippocampal synaptic plasticity relies on
muscarinic receptor functions.

We also studied whether functional changes in the DG excitatory transmission were associated with altera-
tions in tissue distribution of a major marker of glutamatergic transmission, the vesicular glutamate transporter-1
(vGlutl; Fig. 2H,I). Hippocampal content and distribution of vGlutl was affected by both diabetes and electroac-
upuncture (Fig. 2H,I). vGlutl immunolabeling in the ML and in the HL of STZ and STZ+EA groups (Fig. 2H)
appeared as a diffuse staining, when compared to controls, that display a specific vGlut1 staining clustered at cell
bodies. Protein expression levels were estimated by the mean pixel intensity of the vGlutl immunofluorescence.
After streptozotocin, vGlutl mean pixel intensity did not vary in the GL, but decreased in all of the other hip-
pocampal regions (Fig. 2I). After electroacupuncture, values either returned to control levels (ML, HL and PCL)
or became higher than controls (GL: Fig. 2I). Overall, the confocal microscopy analysis on vGlutl suggested a
decrease in the glutamate transport in diabetic rats that partially recovered after EA treatment.

proNGF expression was modified by diabetes and electroacupuncture, and modulated by mus-
carinic receptors activity. As the following, we studied proNGF distribution in the DG of control and
treated rats. Figure 3A displays representative images of hippocampal slices immunolabeled for proNGE. The
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Figure 4. M1AChR tissue content and distribution is modified by diabetes and electroacupuncture and
influences LTP and proNGF secretion. (A) Representative images of M1AChR immunolocalization in the
dentate gyrus (DG). Insets: High-magnification details of M1AChR cellular distribution. (B-D) Mean

pixel intensity and number of M1IAChR immunopositive (M1AChR™) cells in different areas of the DG.
Means &+ SEM (n = 8 fields, 4 animals for each experimental group). One-way ANOVA followed by Bonferroni
multiple comparison test, P values shown in figure. (E,F) Long-term potentiation at dentate gyrus (DG-LTP)
after stimulation of hippocampal slices with the M1AChR selective antagonist telenzepine (TZ) and the non-
specific muscarinic agonist carbachol (CCh). Field excitatory postsynaptic potentials (fEPSP) were recorded
and expressed as the percentage of the pre-tetanus baseline. Changes in fEPSP slopes before and 60 min after
the induction of LTP by high-frequency stimulation (HES) of the medial perforant pathway (black arrow)

are shown (means + SEM; n = 8 for each experimental group). The insets represent typical fEPSP recordings;
calibration bars: 0.5mV, 10 ms. The average of DG-LTP magnitude 50-60 min after HFS is presented on

the right side of the panels (median + interquartile range, whiskers: min. and max.). One-way ANOVA and
Bonferroni multiple comparison (P values shown in figure). (G) Carbachol-stimulated proNGF release from
hippocampal slices. Telenzepine was added to the superfusion bath before hippocampal slices were exposed to
carbachol. Densitometry of the Western blots (cropped representatives shown in the upper side of the panel;
full-length blots are shown in online Supplementary material) illustrates the differences in the telenzepine/
carbachol-stimulated proNGF release among the three experimental groups. Data are expressed as percentage
of the respective baselines (median + interquartile range, whiskers: min. and max.; n =6 for each experimental
group). Repeated-measure ANOVA followed by Bonferroni multiple comparison; P values shown in figure.
(H) Carbachol-stimulated 25/34 kDa proNGF release from hippocampal slices measured by proNGF ELISA.
Telenzepine was added to the superfusion bath before hippocampal slices were exposed to carbachol. Data,
representing the percentage of the respective baseline means, are expressed as means = SEM (n =6 for each
experimental group). Repeated-measure ANOVA followed by Bonferroni multiple comparison; P values shown
in figure. Abbreviations: ML-molecular layer, GL-granular layer, HL-hilus, b-baseline, w/o-washout.
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Figure 5. Diabetes- and electroacupuncture-modified M2AChR expression and its influence on LTP and
proNGF secretion. (A) Representative images of M2AChR immunolocalization in the dentate gyrus (DG)

of the hippocampus. (B-D) Mean pixel intensity of M2AChR immunostaining in different areas of the DG
and number of M2AChR immunopositive (M2AChR™) cells in the hilus. No immune-positive cells were
detected in the granular layer (GL). Means &+ SEM (n = 8 fields, 4 animals for each experimental group). One-
way ANOVA followed by Bonferroni multiple comparison test, P values shown in figure. (E,F) Long-term
potentiation at DG (DG-LTP) after stimulation of hippocampal slices with the M2AChR selective antagonist
AF-DX116 and the nonselective muscarinic agonist carbachol (CCh). Field excitatory postsynaptic potentials
(fEPSP) were recorded and expressed as the percentage of the pre-tetanus baseline. Changes in fEPSP slopes
before and 60 min after the induction of LTP by high-frequency stimulation (HFS) of the medial perforant
pathway (black arrow) are shown (means & SEM; n = 8 for each experimental group). The insets represent
typical fEPSP recordings; calibration bars: 0.5mV, 10 ms. The average of DG-LTP magnitude 50-60 min after
HES is presented on the right side of the panels (median + interquartile range, whiskers: min. and max.).
One-way ANOVA and Bonferroni multiple comparison, P values shown in figure. (G) Carbachol-stimulated
proNGF release from hippocampal slices. AF-DX116 was added to the superfusion bath before hippocampal
slices were exposed to carbachol. Densitometry of the Western blots (cropped representatives shown in the
upper side of the panel; full-length blots are shown in online Supplementary material) illustrates the differences
in AF-DX116/carbachol-stimulated proNGF release among experimental groups. Data are the percentage

of respective baselines (median =+ interquartile range, whiskers: min. and max.; n = 6 for each experimental
group). Repeated-measure ANOVA followed by Bonferroni multiple comparison, P values shown in figure.
(H) Carbachol-stimulated 25/34 kDa proNGF release from hippocampal slices measured by proNGF ELISA.
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AF-DX116 was added to the superfusion bath before hippocampal slices were exposed to carbachol. Data
are percentage of the respective baseline and are expressed as means + SEM (n = 6 for each experimental
group). Repeated-measure ANOVA followed by Bonferroni multiple comparison, P values shown in figure.
Abbreviations: ML-molecular layer, GL-granular layer, HL-hilus, b-baseline, w/o-washout.

overall immunofluorescence intensity increased throughout the entire section in both STZ and STZ+EA groups,
as shown by the heavy punctate immunolabeling sparse among the cells. Differently, intracellular immunola-
beling appeared to decrease, especially in the HL, after diabetes induction, followed by a slight recovery after
electroacupuncture. Insets in each picture detail the distribution of the cellular immunolabeling in the GL: in
the controls, proNGF immunofluorescence occurred in small puncta, mainly distributed within the cell bod-
ies. After streptozotocin, larger and more widespread clumps of immunoreactivity were evident, suggesting an
increase in both the amount and size of proNGF secretory granules. Electroacupuncture after streptozotocin
reduced the size of proNGF-positive (proNGF™) granules, indicating a switch toward control conditions. The
pixel intensity of the proNGF immunolabeling was increased by diabetes in the ML (Fig. 3B) and GL (Fig. 3C),
while it was not affected in the HL (Fig. 3D). Electroacupuncture further increased the mean pixel intensity in
the ML (Fig. 3B) and GL (Fig. 3C). Conversely, the number of proNGF* cells decreased after streptozotocin only
in the HL (Fig. 3D), returning to control levels after electroacupuncture (Fig. 3D). These data indicate a possible
diabetes-induced re-distribution of proNGF toward secretory compartments in both cell soma and dendritic
terminals in the ML.

The production, release and extra-cellular processing of proNGE, in the hippocampus, is regulated by the
BFCNs activity!?. Thus, we turned out to a pharmacological stimulation of ex-vivo superfused hippocampus
slices, to link the cholinergic input with the proNGF release and potential processing (Fig. 3E). A brief exposure
of hippocampal slices to carbachol induced a transient increase in a 50kDa proNGF isoform in the superfusion
medium (Fig. 3F). When the hippocampus was exposed to carbachol, a little increase in the 50kDa proNGF
release was found in the control group, while a significant three-fold increase was observed in the STZ group
(Fig. 3G). NGF-immunoprecipitation (Fig. 3H) revealed the presence, in the superfusion media, of a 34kDa
(faint) and a 25kDa bands, most probably representing the proNGF-A and proNGF-B transcripts respectively®.
Carbachol transiently increased the 25/34kDa proNGF in the superfusates (Fig. 3I), in the controls. Carbachol
stimulated a more robust and sustained proNGF release in the STZ group, that was absent in the STZ+EA group
(Fig. 31). Thus, the muscarinic challenge induced proNGF release from hippocampal slices that was modulated
by electroacupuncture.

We also explored whether diabetes and electroacupuncture influenced the protease machinery responsible for
the maturation and degradation of proNGF. The carbachol-induced plasminogen and tissue plasminogen acti-
vator (tPA) release, from hippocampal slices, were increased in healthy animals (Supplementary Fig. S3), while
no significant variations were found in both the STZ and STZ+EA groups. The activity of the matrix metallopro-
teinase (MMP)-2 and MMP-9 in the superfusates, as revealed by gelatine zymography (Supplementary Fig. S3),
was increased in the STZ group and was normalized in the STZ+4EA group. Thus, diabetes affected the extracel-
lular protease cascade mainly by increasing MMPs activity, while electroacupuncture counteracted the MMPs
over-activity and modulated the muscarinic-regulated release of tPA, a factor upstream to MMPs in the protease
activation cascade'’. These data are consistent with an increased mNGF degradation (by MMPs) in diabetes that
could shift toward a correct proNGF maturation and mNGF activity after electroacupuncture.

M1AChR modulated hippocampal functions after diabetes and electroacupuncture. Since
proNGF release is under cholinergic control, we explored the role of the two main muscarinic acetylcholine
(ACh) receptors expressed in the hippocampus, MIAChR and M2AChR, after diabetes induction and/or elec-
troacupuncture. In Fig. 4A, representative images show hippocampal sections immunolabeled for M1AChR.
The faint punctate immunolabeling sparse among the cells, observed in the ctr group, increased in the STZ and
STZ+EA groups. Differently, the intracellular immunolabeling in both HL and GL neurons decreased after dia-
betes induction and slightly recovered after electroacupuncture. An increased immunolabeling, as mean pixel
intensity, was evident after streptozotocin, which however reached significance only in the ML (Fig. 4B-D).
Electroacupuncture significantly enhanced the M1AChR immunostaining intensity in the ML (Fig. 4B-D). The
number of MIAChR™ cells, in the GL and HL, decreased in the STZ group (Fig. 4C,D) and did not recover in
GL after electroacupuncture (Fig. 4C). Thus, after diabetes induction, M1AChR increased and underwent tissue
re-distribution, with a prevalent re-location of immunoreactivity toward the ML, while electroacupuncture fur-
ther increased M1AChR protein in the DG.

We, then, verified whether M1AChR participates in the regulation of both DG-LTP and proNGF release by
hippocampal cells. To this aim, we used telenzepine (TZ), a selective M1 AChR antagonist, both in basal condi-
tions and in the presence of carbachol. Bath-applied telenzepine (200 nM) lowered the magnitude of DG-LTP
(Fig. 4E; statistics in Table 1), in hippocampal slices, from healthy rats (Table 1, row 3 vs row 1). Telenzepine did
not affect DG-LTP in the STZ group, while it abolished the rescue of LTP (see Fig. 2F) in the STZ+EA group
(Table 1 row 3 vs row 1), suggesting that M1AChR participates in the electroacupuncture-induced recovery of
diabetes-impaired LTP.

Telenzepine counteracted the effects of carbachol on DG-LTP in healthy rats (Table 1, row 4 vs row 2), further
confirming the LTP facilitation played by M1AChR. In the STZ group, carbachol together with telenzepine did
not affect the magnitude of DG-LTP (Table 1 row 4 vs row 2). DG-LTP was depressed by carbachol and telenze-
pine, in the STZ+EA group (Fig. 4F; Table 1, row 4), suggesting a recovery of M1AChR activity after electroac-
upuncture. Furthermore, telenzepine exacerbated the carbachol-induced decrease in the magnitude of DG-LTP
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observed in the STZ+EA group (Table 1, row 4 vs row 2), indicating that electroacupuncture probably acts also
on the muscarinic LTP-depressive component”.

Telenzepine did not affect the carbachol-stimulated release of the 50 kDa proNGF from hippocampal slices
(Fig. 4G), in all of the experimental groups. The 25/34kDa proNGF species in the superfusion media, measured
by proNGF ELISA (Fig. 4H), were also not significantly modulated by carbachol after telenzepine. Of note, tel-
enzepine pre-treatment inhibited the carbachol-induced increase in proNGF release (depicted at Fig. 31), sug-
gesting a main role for M1AChR in regulating the proNGF secretion from brain cells. A significant interaction
effect was observed for the two variables (antagonist/time and experimental group) in the two-way ANOVA
(Supplementary Table 2), suggesting that the activity of M1AChR was different in different experimental groups.
Indeed, the presence of telenzepine in the superfusion bath, further inhibited the carbachol-induced proNGF
release from STZ+EA compared to STZ hippocampi, as confirmed by Bonferroni multiple comparison between
the STZ and STZ+EA groups (not shown in Fig. 4H).

Role of M2AChR in modulating DG-LTP and proNGF release after diabetes and electroacupunc-
ture. Wealso evaluated the distribution and intensity of immunolabeling of the G;,-coupled M2AChR in the
hippocampus. M2AChR-immunopositive fibres decorated the extracellular parenchyma in both ML and HL,
living the GL largely unlabelled. After diabetes induction, the intensity of immunolabeling increased (Fig. 5A),
as confirmed by the mean pixel intensity in the GL and HL (Fig. 5C,D). Electroacupuncture treatment, in dia-
betic rats, did not affect the intensity of immunolabeling but increased the number of M2AChR™ cells in the HL
(Fig. 5D). This suggests that electroacupuncture was promoting a re-distribution of the M2AChR after it was
increased by diabetes in the DG.

We evaluated the possible functional correlates of the M2AChR re-distribution by measuring basal and
carbachol-stimulated DG-LTP and proNGF release in the presence of the M2AChR selective antagonist
11-[[2-[(Diethylamino)methyl]-1-piperidinyl]acetyl]-5,11-dihydro-6H-pyrido[2,3-b][1,4]benzodiazepin-6-one
(AF-DX116)¥. AF-DX116 potentiates basal DG-LTP in healthy rats (Table 1, row 5 vs row 1). In the presence of
AF-DX116, DG-LTP was depressed in slices from the STZ group (Fig. 5E; Table 1, row 5) and recovered to control
level in those from the STZ+EA group (Fig. 5E; Table 1, row 5). These data indicate that the M2AChR-mediated
DG-LTP modulation is normally depressive and non-significantly affected by diabetes and electroacupuncture.

The simultaneous presence of AF-DX116 and carbachol (Fig. 5F) induced a little, but significant, potentia-
tion of DG-LTP in diabetic animals (Table 1, row 6 vs row 5), that was also noticed after carbachol administra-
tion alone (Table 1, row 6 vs row 2). In the STZ+EA group, the application of AF-DX116+carbachol depressed
DG-LTP to STZ group levels (Fig. 5F; Table 1, row 6). This result confirms the apparent paradox effect of car-
bachol when applied to hippocampal slices from electroacupuncture-treated rats (Table 1, row 2 vs row 1). It
suggests that the depression of LTP could be mediated by receptors other that M2AChR when an excess of ago-
nist is present, which could be either endogenous acetylcholine or exogenous carbachol?’. Taken together with
the M1AChR data, a picture emerges where electroacupuncture recovered the overall muscarinic facilitatory
response.

We, then, evaluated the release of proNGF in the presence of AF-DX116. The basal release of the 50kDa
proNGE, from hippocampal slices, after AF-DX116 (Fig. 5G) increased in both ctr and STZ groups, and was not
affected in the STZ-+EA group, suggesting that the acetylcholine present in the brain parenchyma tonically inhib-
its proNGF release by challenging M2AChRs. The exposure of brain slices to AF-DX116+carbachol increased the
50kDa proNGF release in ctr and STZ+EA groups (Fig. 5G). AF-DX116 (before carbachol application) increased
the 25/34kDa proNGF in the superfusates in all of the experimental groups (Fig. 5H), further indicating that an
M2AChR-mediated mechanism is active in controlling basal proNGF release, being probably not affected by both
diabetes and electroacupuncture. Subsequent exposure of brain slices to carbachol, in the presence of AF-DX116,
induced a transient proNGF release, which rapidly returned to baseline in ctr and STZ+EA groups, but remained
higher than baseline for a longer time in the STZ group (Fig. 5H). The transient increase in proNGF release, in
STZ group, was longer than the one shown in Fig. 31, suggesting that the ability of M1AChR to stimulate proNGF
secretion, selected by M2AChR blockade and carbachol challenge, was enhanced in diabetic brain and rescued
by electroacupuncture.

Discussion
It is relevant that a major therapeutic approach to delay and/or attenuate the cognitive decline, in both Alzheimer’s
disease and diabetic encephalopathy, relies on physical therapies®® ?°. Here, we demonstrate that the diabetes
development in young adult rats is characterized by mild-to-severe neuronal loss in the hippocampus; impair-
ment in hippocampal-related learning and memory; reduction in cellular glutamate trafficking and in synaptic
plasticity; dysfunctions in the tissue distribution of muscarinic receptors; increased activity-dependent release of
proNGE Electroacupuncture, a physical therapy based on repetitive low-frequency sensory stimulation'é, was
able to counteract the early depressive effects of diabetes on the hippocampal neurotransmission and metabolism.
Electroacupuncture, probably by rescuing the glutamate vesicular transport content and M1AChR-mediated cho-
linergic neurotransmission, normalized learning and memory functions and DG-LTP and regulated proNGF
release in diabetic hippocampus. A schematic summary of the overall experimental findings is presented at Fig. 6.
The hippocampus is particularly vulnerable to both hyper- and hypoglycaemia®*. Our data on nuclear
size and cell number indicate a possible general increase in transcription activity, confirming the apoptotic
process activation in diabetic hippocampus®. The diabetes-induced cell loss encompassed both neuronal and
non-neuronal cells, but the electroacupuncture rescuing effects appeared restricted to areas with high neuronal
density (GL and PCL). Since electroacupuncture is a modulator of brain activity*? and neural plasticity®> 3%, it is
conceivable that excitatory granular and pyramidal neurons could benefit from the activation of sensory pro-
cesses, that stimulates the recovery of diabetes-impaired excitatory transmission and the normalization of the
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Figure 6. Summary drawing of the experimental findings. The behavioural alteration found in the Morris
water maze early after diabetes induction in young adult rats (upper part of the figure), were concomitant to
the reduction in glutamatergic transmission (middle part of the figure), neuronal loss in the hippocampus,

the depression of synaptic plasticity and the increased expression and possibly activity of the M1-subtype
muscarinic receptor, resulting in increased activity dependent release of the proNGF (lower part of the figure).
The electroacupuncture normalized spatial learning and memory performance in diabetic rats, improved
glutamatergic neurotransmission, LTP and the activity-dependent release of proNGE, modulating the response
of muscarinic receptor to acetylcholine challenge.

muscarinic responsivity to cholinergic inputs. The stimulation delivered by electroacupuncture is known to mod-
ulate the peripheral and central processing of sensory information'® 32 The hippocampus integrates sensory infor-
mation driven from cortical areas and the midbrain and brainstem, these latter conveyed through BFCNs*>%,
Thus, electroacupuncture could affect hippocampal functions, by modulating both subcortical and cortical hip-
pocampal inputs.

The effects of diabetes and electroacupuncture were evident at the behavioural level. Diabetes induced a sig-
nificant decline in spatial learning and memory functions and, following electroacupuncture, the abilities of spa-
tial localization and memory reverted to control values. In the current experimental model of early diabetes,
cognitive (spatial) deficits are present, similar to the dysfunctions in specific cognitive domains described in
diabetic children and adolescents®. We demonstrate that they could benefit from electroacupuncture, which acts
on specific functional and biochemical alterations in hippocampal regions. Our findings extend previous reports
describing that nine weeks of hyperglycaemic pre-diabetic state are sufficient to generate mild cognitive impair-
ment’, while 40-day streptozotocin treatment combined to a cerebral ischemia produces consistent learning and
memory deficits®. Such a cognitive impairment is positively affected by electroacupuncture treatment®.

We characterized the diabetes-induced re-distribution of major players involved in activity-dependent hip-
pocampal functions: vGlutl, MIAChR and M2AChR. vGlutl, a glutamate transporter preferentially associated
with the membranes of synaptic vesicles and a specific molecular marker of vesicular glutamate release®. It has
been suggested that vGlutl has a functional role in hippocampal synaptic plasticity and in spatial learning and
memory*’. We found that vGlut1 was decreased in diabetic brain at sites where glutamatergic synapses partici-
pate in the propagation of excitatory signals from the cortex toward the hippocampus, namely ML, HL and PCL.
Consistently, lower extracellular glutamate content at the DG of streptozotocin-treated rats has been previously
reported*!. The increase in the intracellular vGlut1 (at least in the HL) suggests that diabetes could selectively
interfere with the traffic of glutamate toward efferent terminals, with a consequent decreased capability of diabetic
hippocampus to generate LTP. Streptozotocin administration affected M1AChR and M2AChR in an opposite
fashion in comparison to vGlutl. The suffering hippocampal neurons could undergo functional modifications**
and structural derangement, i.e. dendritic tree alteration®?. In diabetic rats, these modifications may result in
MIACHR protein delocalization from neuron somata in the DG to their dendrites in the ML. Here is where
the transmission of excitatory signal from the cortex to the DG physically occurs at axo-dendritic contacts and
where the cholinergic fibres from the BFCN also exert their modulatory activity*>. M2AChR immunolabeling
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also increased, but in different areas than M1AChR, namely the GL and HL, coherently with M2AChR main role
as regulator of interneuron activities*. Thus, in the early diabetes, there could be an attempt of hippocampal cells
to compensate the impairment of glutamatergic transmission by increasing cholinergic sensitivity. This attempt,
instead of ameliorating the excitatory function, could in turn generate a potential harmful effect, mediated by the
proNGF released upon muscarinic challenge!®*.

Our data put together the impairment in LTP, the excess of proNGF and the muscarinic responsivity generated
by diabetes in the hippocampus. The secretion of proNGF is regulated by glutamatergic and/or cholinergic neu-
rotransmission® *°. It is conceivable that a M1AChR-mediated mechanism in the diabetic hippocampus is mostly
responsible for the increase in proNGF tissue content®. Indeed, the reduction in glutamatergic transmission in
the DG of diabetic rats was concomitant to an increased release of proNGF after muscarinic receptors challenge,
an effect normalized by the M1AChR antagonist telenzepine. Considerably, the extracellular proNGF maturation
and mNGF degradation'® was possibly shifted toward the latter (increased MMP9 activity in diabetic rats) that
toward proNGF maturation (decrease of plasminogen and tPA in diabetic rats). proNGF accumulation, in dia-
betic hippocampus, could be involved in the regulation of neural plasticity and learning, directly influencing hip-
pocampal cells and circuitries and/or by modulating cholinergic transmission from the BFCN'"*¢, While mature
NGF positively affects LTP generation through TrkA*, the role of proNGF in regulating DG-LTP remains elusive.
A mechanism based on its action on p75N™® deserves future in-depth analysis, in view of recent data demonstrat-
ing that proBDNF negatively regulates dendritic complexity and spines density and impairs hippocampal LTP by
challenging p75N™ %, and that proBDNF-p75~R pathway is responsible for LTD-generated hippocampal synapse
elimination®,

We hypothesized that electroacupuncture modulates hippocampal function trough the muscarinic activity.
Both M1AChR and M2ACHR positively regulate DG-LTP>»?7. M2AChR, acting as presynaptic auto-receptor,
could also block the acetylcholine-mediated potentiation of LTP, by inhibiting acetylcholine release from cho-
linergic terminals*. The non-selective muscarinic agonist carbachol generated a large enhancement in DG-LTP
in control but not in diabetic rats. Moreover, carbachol abolished the effects of electroacupuncture on diabetic
hippocampi, leading the DG-LTP at levels comparable to those of the STZ group. This apparent paradox could be
explained dissecting the respective roles of the muscarinic receptors. Telenzepine acted in similar ways in con-
trols and STZ+EA groups while it was almost ineffective on hippocampi from STZ group, suggesting that elec-
troacupuncture restores M1AChR modulation of DG-LTP. Conversely, blockade of M2AChR was ineffective in
both STZ and STZ+EA groups. M2AChR located on interneurons inhibits GABA release, while on pre-synaptic
cholinergic terminals it acts as inhibitory auto-receptor®. In our experiments, GABA-A receptors were blocked
by picrotoxin to allow the measure of DG-LTP. Thus, the activity of AF-DX116 was restricted to the pre-synaptic
M2AChRs and probably resulted in a facilitation of acetylcholine release by cholinergic terminals upon stimula-
tion of the perforant pathway. This response was lacking in diabetic animals, independently of electroacupuncture
treatments, suggesting that electroacupuncture did not influence M2AChRs activity. It is conceivable, however,
that electroacupuncture restores the acetylcholine tissue content, since the concomitant stimulation of the per-
forant pathway and the exposure to carbachol led to muscarinic agonist high dosage-dependent depression in
fEPSP?’. These described effects should be most probably mediated by receptors other than M2AChR and not
related to the GABA ergic transmission®.

We found that M1AChR stimulated proNGF release, while M2AChR inhibited it. The abnormal release of
proNGF in diabetic hippocampi, as well as its increased tissue content®, could reflect increased M1AChR and/
or reduced M2AChR activities. Electroacupuncture most probably normalizes this unbalance. Indeed, telenze-
pine depressed while AF-DX116 enhanced the carbachol-induced proNGF release, mainly in the STZ group;
the STZ+EA group was instead found very similar to control. A muscarinic-mediated mechanism could be also
responsible for the unbalance in the activity of the extracellular protease machinery responsible for proNGF
maturation and mNGF degradation'®, which shifted toward the latter in diabetic animals, probably contributing
to the decrease in mNGF/proNGF balance in the diabetic brain®.

In conclusion, our data indicate that electroacupuncture in early diabetic rats, acts by favouring the
maintenance of synaptic plasticity and its functional correlate (DG-LTP) in the hippocampus (Fig. 6).
Electroacupuncture modulates both protein expression and hippocampal distribution of muscarinic receptors
and of the neurotrophin proNGEF, both involved in the regulation of hippocampal functions. It is conceivable that
electroacupuncture action extends to the entire septo-hippocampal circuitry, also influencing the metabolism
and functional properties of BFCNs. Overall, our findings point to the validity of physical therapies, such as
electroacupuncture, as simple and effective interventions supportive of more complex and sometimes invasive
pharmacological approaches targeting central neurons for the care of neurodegenerative diseases.

Methods

Detailed experimental procedures are described in the Supplementary material.

Animals. Fifty-day old female Sprague-Dawley rats were purchased from Harlan (Nossan, Italy). Rats were
weighed and housed three per cage, with standard food and water available ad libitum. The animal room had a
controlled 12-hours light cycle (lights on at 07:00h), lux level (on average 100 lux), temperature (21 +1°C) and
relative humidity (50 + 5%). All experiments were conducted according to the ARRIVE guidelines®. Animal care
procedures were conducted in conformity with the Legislation for the protection of animals used for scientific
purposes provided by the relevant Italian law and European Union Directive (Italian Legislative Decree 26/2014
and 2010/63/EU) and the International Guiding Principles for Biomedical Research involving animals (Council
for the International Organizations of Medical Sciences, Geneva, CH)*!. Animals were subjected to experi-
mental protocols approved by the Veterinary Department of the Italian Ministry of Health (Permit Number:
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192/2015-PR). All adequate measures were taken to minimize animal pain or discomfort and all surgery was
performed under isoflurane anesthesia.

Diabetes induction and experimental design. Sixty-day old female Sprague-Dawley rats received a
single intraperitoneal injection of 65 mg/kg Streptozotocin (STZ; cat. S0130, Sigma-Aldrich), dissolved in citrate
buffer (vehicle), pH 4.5%%. One week after streptozotocin treatment, we analysed blood glucose and allocated rats
with levels above 300 mg/dl to the diabetic groups. Rats were divided in three groups as follows: controls (ctr),
once injected with vehicle; diabetics (STZ), treated with streptozotocin; electroacupuncture-treated diabetics
(STZAEA): electroacupuncture treatment was started one week after streptozotocin and performed twice a week
for three weeks. Four weeks after streptozotocin, rats were either subjected to behavioural tests or euthanized and
the whole brain or brain tissues collected for storage or immediate analysis.

Electroacupuncture. Stainless steel needles (diameter 0.20 mm) were inserted bilaterally at the traditional
Chinese acupoints “Stomach 36” and “Large Intestine 4”°. Low-frequency electroacupuncture was given to con-
scious rats, placed in a soft fabric harness and suspended above the desk®, through a specific electrical stimulator
(CEFAR ACU II; Cefar-Compex Scandinavia). The acupoints were electrically stimulated at 2 Hz frequency with
0.1-sec, 80-Hz burst pulses. The intensity (0.8-1.0 mA) was monitored by checking for local muscle contractions,
which reflect the activation of muscle-nerve afferents. Control and diabetic rats were exposed to the same han-
dling and suspension procedure, but not to electroacupuncture.

Behavioural testing in the Morris water maze. Seven rats/group were tested in the MWM apparatus,
following a 3-day protocol. On day 1, each rat was submitted to 10-trial (120s) Place 1 phase with the hidden
platform put in the NW quadrant, followed by one trial (60s) with no platform in the pool (Short-Term Probe
1, Probe ST1). On day 2, the rat was submitted to 10-trial Place 2 phase with the hidden platform put in the SE
quadrant, followed by one Probe trial (Short-Term Probe 2, Probe ST2). On day 3, the rat was submitted to one
Probe trial (Long-Term Probe, Probe LT). MWM parameters considered were: latencies to reach the platform
(Place 1 and Place 2); distance swum in the previously rewarded (platform) quadrant (Probe ST1, Probe ST2 and
Probe LT).

Electrophysiology. For extracellular recordings, hippocampal slices (350 1M thick) were kept submerged
at 30°C and superfused (2-3 ml/min) with oxygenated (95% O,, 5% CO,) artificial CSE. Stimulation was applied
to the medial perforant pathway of the dentate gyrus (DG), using a bipolar insulated tungsten wire electrode,
and field excitatory postsynaptic potentials were recorded at a control test frequency of 0.033 Hz from the mid-
dle one-third of the molecular layer of the DG with a glass microelectrode. LTP was evoked by high-frequency
stimulation (HFS) consisting of eight trains, each of eight stimuli at 200 Hz, and an inter-train interval of two
seconds, with the stimulation voltage increased during the HFS protocol. Measurements of LTP were made
60 min post-HFS. All solutions contained 50 uM picrotoxin (P1675, Sigma-Aldrich) to block GABA-A-mediated
activity. The muscarinic modulation of LTP was investigated by carbachol (100 nM; cat. C4382, Sigma-Aldrich)
stimulation of hippocampus slices. The specific role of muscarinic receptors subtypes was studied by telenze-
pine (200 nM; cat. T122, Sigma-Aldrich) and AF-DX116 (200 nM; cat. SML0435, Sigma-Aldrich), respectively
MI1AChR and M2AChR selective antagonists, applied in bath superfusion with or without carbachol.

proNGF release experiments. Hippocampal slices (350 um thickness) were kept for 1h in cold oxygen-
ated artificial CSF. Slices were then placed into a superfusion system (Minucells and Minutissue), using 5.0 um
Durapore™ membrane filters (cat. SVLP01300, Millipore). The tissues were constantly superfused, at 37°C and a
flow rate of 0.25 ml/min, with modified Hank’s buffer pH 7.8, equilibrated with 95% O, and 5% CO, After 30 min,
a sample of the superfusion buffer was collected representing the baseline and a 5 minutes-long stimulation with
100 nM carbachol and/or with 200 nM telenzepine and/or with 200 nM AF-DX116 was applied, before returning
to superfusion with modified HanK’s buffer. Samples were collected at 5min intervals for 1h and immediately
frozen at —80°C.

Immunofluorescence, Stereology and Confocal Microscopy. Coronal 40 pm-thick brain sections
were pre-incubated with PBS containing 10% (v/v) donkey serum, 1% (w/v) BSA and 0.3% (v/v) Triton X-100,
for 2h at room temperature (RT). Sections were then incubated, overnight (ON) at 4 °C, with primary antibodies
diluted in the same medium (details at Supplementary Table 1). To assess for staining specificity, some of the
sections were incubated in purified non-specific rabbit or mouse IgG. After washing with PBS, sections were
incubated (2h, RT) with specific secondary antibodies. Successively, sections were rinsed in PBS, incubated for
10 min with Hoechst for nuclei staining.

For stereological analysis, cell counting was conducted using an Axioskop 2 (Zeiss) fluorescence microscope
interfaced with the Stereo Investigator software package (MicroBrightField, v11). ROI (Supplementary Fig. 1A)
were outlined using a 4x objective lens and cell counting was performed using the Optical Fractionator probe at
a higher magnification (100x oil-immersion objective lens) according to the setup reported in Supplementary
Fig. 1B.

For confocal microscopy analysis, sections were viewed at a confocal laser scanning microscope (SP5, Leica
Microsystems) under sequential mode, to avoid crosstalk between channels. Confocal image acquisitions were
conducted so that all samples were imaged using consistent settings for laser power and detector gain. Boundaries
and subdivisions of the brain structures were identified with reference to the Paxinos” Rat Brain atlas®. Image
analysis was performed by the Imaris Suite 7.4 software (Bitplane A.G.). To evaluate the mean pixel intensity and
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the number of cells in the different areas, a mask for each channel was manually drawn using the Imaris Surface
module.

Immunoprecipitation. Superfusates (0.6 ml) were pre-cleared for 1h with protein A/G Sepharose
(cat. 20421, Thermo Scientific) and then immune-precipitated, ON at 4 °C, with 2 ug of NGF H20 antibody
(Supplementary Table 1) bound to 50 ul of protein A/G Sepharose beads. After incubation, protein A/G-bound
immune-complexes were washed three times with PBS, then suspended in 50 pl of 2X reducing sample load-
ing buffer and boiled at 95-100 °C for 5 min to denature the protein and separate it from the Ab-protein A/G
Sepharose bead complex. Sample were then processed for Western blot.

Western blot. Twenty milligrams protein samples were resolved by 8-12% SDS-PAGE as described®. Proteins
were transferred onto nitrocellulose membrane by ON blotting at 30V, then rinsed in T-PBS (PBS + 1% Tween
20), blocked in T-PBS containing 5% non-fat dry milk and incubated, ON at 4 °C, with the primary antibod-
ies (Supplementary Table 1). The blotted membranes were then washed in T-PBS, incubated with horseradish
peroxidase-labelled secondary antibody (Supplementary Table 1) and developed with the enhanced chemilumi-
nescence (ECL) detection system (WBKLS0500, Millipore). Gel densitometry was performed on scanned immu-
noblot images, using the Image]J gel analysis tool. Full-lenght blots and loading controls corresponding to the
cropped blots shown at Figs 3, 4 and 5 are depicted in Supplementary Fig. S4.

proNGF ELISA. The proNGF content in superfusates was measured by a recently developed specific ELISA®.
The capture and detection antibodies (Supplementary Table 1) were chosen to detect selectively proNGF and to
avoid cross-detection of mature NGE

Statistical Analysis. Statistical analysis was performed using GraphPad Prism 5 (GraphPad Software).
Means were generally compared by one-way ANOVA and, unless mentioned otherwise (i.e. in Table 1), multi-
ple comparisons performed by Bonferroni post-hoc test. Differences were considered statistically significant if
P <0.05. When the measures for the main variable (three experimental groups) were repeated over time or after
a pharmacologic treatment, means were analysed by two-way ANOVA with significance level = 0.05 (two-way
ANOVA data at online Supplementary Table 2). Multiple comparisons by Bonferroni post-hoc test were then
performed according to the main or interaction effects revealed by two-way ANOVA. Further details on Study
design and statistics are given in online Supplementary methods.
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