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Abstract To meet specific requirements of devel-

oping tissues urgently needed in tissue engineering,

biomaterial research and drug toxicity testing, a

versatile perfusion culture system was developed.

First an individual biomaterial is selected and then

mounted in a MINUSHEET� tissue carrier. After

sterilization the assembly is transferred by fine forceps

to a 24 well culture plate for seeding cells or mounting

tissue on it. To support spatial (3D) development a

carrier can be placed in various types of perfusion

culture containers. In the basic version a constant flow

of culture medium provides contained tissue with

always fresh nutrition and respiratory gas. For exam-

ple, epithelia can be transferred to a gradient contain-

er, where they are exposed to different fluids at the

luminal and basal side. To observe development of

tissue under the microscope, in a different type of

container a transparent lid and base are integrated.

Finally, stem/progenitor cells are incubated in a

container filled by an artificial interstitium to support

spatial development. In the past years the described

system was applied in numerous own and external

investigations. To present an actual overview of

resulting experimental data, the present paper was

written.

Keywords Cell culture � Perfusion culture �
3D culture � Tissue carrier � Bioreactor � Tissue
engineering � Biomaterial testing � Biomedicine

Introduction

Nowadays it is standard in the laboratory to culture

cells and tissues according to their individual needs by

more or less sophisticated techniques. However,

25 years ago proliferating cells were generally kept

in a small selection of glass or plastic containers

resembling the traditional Petri dish. The problem was

that a dish does not meet the requirements of

developing tissues. Thus, for the generation of tissues

improved culture techniques were needed but at that

time attractive bioreactors were not commercially

available.

As a consequence, the lack of suitable tools for the

generation of specialized tissues was the motivation

to start with the construction of the MINUSHEET�

perfusion culture system (Minuth 1990). The goal

was to devise a simple technique, which enables

selection of an individual biomaterial for optimal

cell adhesion to mount it in a specific holder, to seed

cells on it in a 24 well culture plate and finally to

transfer it to a series of perfusion culture containers

for the generation and long term maintenance of

various specialized tissues (Minuth and Rudolph

1990; Minuth et al. 1992a). Considering further the

diversity of specialized tissues in an organism on the
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one hand and the variety of biomaterials used in

tissue engineering and regenerative medicine on the

other hand, it was obvious that only a highly

adaptable system could provide those environmental

parameters that are demanded for corresponding

in vitro experiments.

Technical properties

Mounting a biomaterial in a tissue carrier

The introduced concept is based on a MINUSHEET�

tissue carrier, which enables the user to mount a

selected biomaterial by his own hands in the labora-

tory. To stay compatible with a 24 well culture plate,

the biomaterial is punched out to a diameter of 13 mm

(Fig. 1a). In this coherence it does not matter whether

decellularized extracellular matrix, synthetic poly-

mers, ceramics, metals or biodegradable scaffolds are

selected. Further on, materials can be used in form of

foils, filters, nets, fleeces, foams or solid supports

containing small or big pores.

For practical application, a punched out filter is

placed in the base part of a MINUSHEET� tissue

carrier (Fig. 1b; black ring). By pressing down a

tension ring (white ring) the filter is fixed in position.

The use of this demonstrated tissue carrier prevents

damage of the mounted biomaterial and protects cells

during seeding, ongoing development and further

experimental manipulation.

The following disinfection of the mounted carrier

depends on the chemical composition of the selected

biomaterial. Therefore it is either performed by

formaline, ethylene oxide gas, irradiation or autoclav-

ing. Subsequently, the tissue carrier can be frozen,

stored at room temperature in a sterile box or used

immediately for cell seeding.

Seeding of cells

For seeding of cells a sterile tissue carrier mounted

with a biomaterial is placed by forceps into a 24 well

culture plate (Fig. 1c). In a next step culture medium is

slowly added by a pipette so that the surface of the

inserted biomaterial is just wetted. Then cells are

transferred by a pipette within a small droplet of

medium. In a standard set up seeding of cells is

performed only on the upper side of a selected

biomaterial. However, in the case a co-culture ex-

periment is planned, seeding of a second cell type is

made after turning the tissue carrier.

For creation of an artificial interstitium isolated

cells or a thin slice of living tissue are mounted

between two pieces of polyester fleece in a carrier.

Further pieces of a collagen sheet can be placed in a

tissue carrier like the skin of a drum. These few

examples illustrate that in principle numerous kinds of

applications exist for mounting a biomaterial in

combination with isolated cells or even living tissues

in a carrier.

Fig. 1 Application of a MINUSHEET� tissue carrier. a First a
biomaterial measuring 13 mm in diameter is selected. b Then

the biomaterial is placed in the black base part of a tissue carrier.

Mounting is completed by pressing the white tension ring in the

base part. c After sterilization the carrier is transferred by

forceps to a 24 well culture plate for cell seeding
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Analysis of cell distribution

Regardless of whether transparent or non-transparent

biomaterials are used, the quality of seeding and

resulting cell distribution must be controlled. This can

best be achieved by epi-fluorescence microscopy, when

specimens were fixed in 70 % ethanol and labeled for

example by propidium iodide (Minuth et al. 1994). In

such a protocol fluorescent nuclei reflect the distribu-

tion of cells on a selected biomaterial. Surprising results

were obtained, when MDCK cells were cultured on

materials such as glass, polystyrene (Thermanox�),

white and black polycarbonate filters. Depending on the

selected material the pattern of screened cells was

ranging between perfect confluence, atypical dome,

cysts and cluster formation.

Selection of a perfusion culture container

Only for the relatively short period of cell seeding a

MINUSHEET� tissue carrier is kept in the static

environment of a 24 well culture plate. Then a

perfusion culture container is selected to offer adher-

ent cells a fluid milieu, which better meets special

needs of developing tissue than the static environment

of a dish. Further the exact adjustment of a tissue

carrier within a perfusion culture container guarantees

an equal distribution and consequently a continuous

transport of always fresh culture medium, whereby an

uncontrollable accumulation of harmful metabolites

and an overshoot of paracrine factors during proceed-

ing culture is prevented.

In the basic version of a perfusion culture container

up to six tissue carriers can be placed beside each other

(Fig. 2a). A continuous fluid flow provides here for

example developing connective tissue from all sides

with always fresh nutrition and respiratory gas. In a

gradient perfusion culture container the tissue carrier is

fixed centrally between the base and the lid. This design

enables to transport different media at the luminal and

basal side (Fig. 2b). For microscopic observation a

cFig. 2 Versatile use of a MINUSHEET� tissue carrier in a

perfusion culture container. a In a basic version a perfusion

culture container can hold six tissue carriers for provision with

always fresh medium. b In a gradient perfusion culture container
the contained tissue is exposed to different fluids at the luminal

and basal side. c For observation of growing tissue under a

microscope a transparent lid and base is integrated in a

container. d A perfusion culture set up is running in the typical

case on a laboratory table and under atmospheric air. A thermo

plate maintains the desired temperature of 37 �C. During culture
a peristaltic pump transports the medium (1.25 ml/h) from a

storage bottle (left side) to the waste bottle (right side). Arrow

indicates flow of medium
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container exhibits a transparent lid and base (Fig. 2c). A

further container contains a flexible siliconemembrane.

Whenmechanical force by an eccentric rotor is applied,

a transmitted stimulus in the interior supports develop-

ment of cartilage or bone. Finally, a perfusion culture

container filled with a polyester fleece as an artificial

interstitium makes it possible to investigate spatial

development of parenchyma.

Fresh fluid continuum

When cells in combination with a biodegradable

biomaterial are kept in culture, it must be considered

that both can produce harmful metabolites such as

lactic acid leading in turn to an un-physiological

accumulation. Thus, an overshoot of such metabolites

must be prevented and its concentration has to be kept

on a constant low physiological level. Due to this

reason developing tissue is exposed in a perfusion

culture container to a continuous flow of always fresh

medium. To prevent an accumulation of harmful

metabolites within a perfusion culture container,

quality of medium is measured at the outflow for

example by a blood gas analyzer (Nova Biomedical,

Rödermark, Germany). According to registered

metabolites the rate of medium transport can be

adapted to the individual needs of contained tissue.

Finally, metabolized medium is not re-circulated but

collected in a separate waste bottle.

The transport of culture medium is best accom-

plished by application of a slowly rotating peristaltic

pump (ISMATEC, IPC N8, Wertheim, Germany),

which is able to provide adjustable transport rates

between 0.1 and 5 ml per hour and channel (Fig. 2d).

In personal experiments optimal results were obtained,

when medium was transported with 1.25 ml/h for a

period of at least 13 days. Further on, for maintaining

a defined temperature of 37 �C within a perfusion

culture container, a heating plate (MEDAX-Nagel,

Kiel, Germany) and a special Plexiglas cover lid (not

shown) is used (Fig. 2d).

Stabilization of pH in transported culture medium

Perfusion culture can be performed either in a

traditional CO2 incubator or better on a laboratory

table. In the case a CO2 incubator is used, a culture

medium is selected containing a buffer system with a

relatively high amount of NaHCO3. It will maintain in

a 5 % CO2 atmosphere of an incubator a constant pH

between 7.2 and 7.4. However, when such a formu-

lated medium is used in a perfusion culture set up

outside a CO2 incubator, the pH will shift from the

physiological range to alkaline values due to the low

content of CO2 (0.03 %) in atmospheric air. In turn

contained cells, respectively, tissues are chronically

damaged and will finally die.

In principle, most of media are suitable for applica-

tion in perfusion culture. However, when it is per-

formed outside a CO2 incubator, the media must be

ordered with a strongly reduced NaHCO3 concentra-

tion. Further biological buffers such as HEPES

(GIBCO/Invitrogen, Karlsruhe, Germany) or BUFFER

ALL (Sigma-Aldrich-Chemie, München, Germany)

have to be added for constant stabilization of pH. The

necessary amount is determined by admixing increas-

ing concentrations of biological buffer solution (always

in the same volume) to an aliquot of medium. Then the

mediummust equilibrate overnight on a thermo plate at

37 �C under atmospheric air. Finally, the aliquots are

measured by an electrolyte analyzer. The data revealed

that for example addition of 50 mmol/l HEPES or an

equivalent of BUFFER ALL (1 %) to IMDM (Iscove’s

Modified Dulbecco’s Medium, GIBCO/Invitrogen)

maintains the pH between 7.3 and 7.4 throughout long

term perfusion culture on a laboratory table under

atmospheric air (Roessger et al. 2009).

Further on, beside conventional media well suited

culture media for perfusion culture running under

atmospheric air are Leibovitz’s L-15Medium and CO2

Independent Medium. Both were successfully applied

under chemically defined conditions (Minuth et al.

2013; Minuth and Denk 2013).

Respiratory gas in transported medium

For enrichment of oxygen (O2) in a perfusion culture

set up medium is pumped through a gas-permeable

silicone tube. It provides a large surface for the gas

exchange by diffusion due to a thin wall (1 mm), small

inner diameter (1 mm) and extended length (1 m). For

example, IMDM (3024 mg/l NaHCO3, 50 mmol/l

HEPES) equilibrated against atmospheric air reveals

in a standard perfusion culture set up partial pressures

of 160 mmHg O2 and 10 mmHg CO2 (Minuth et al.

2001; Strehl et al. 2004).

Further the requirement for oxygen depends on

specialization of the individual tissue. For that reason
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in special cases the concentration of O2 must be

adapted in transported medium. A simple technical

solution is a gas exchange module containing a gas

inlet and outlet (Strehl et al. 2004). Further a spiral

with a long thin-walled silicone tube for medium

transport is mounted inside the module. Since the tube

of the spiral is gas-permeable, diffusion of gases

between culture medium (inside the spiral) and a given

atmosphere (outside the spiral) within the gas ex-

change module takes place during transport. Applying

this simple method the gas atmosphere can be adjusted

by a constant flow of a specific gas mixture at the

outside of the spiral. During run of such an experiment

the content of gas at the in- and outflow of a perfusion

culture container is controlled by a blood gas analyzer.

Elimination of gas bubbles

During transport of medium gas bubbles will arise in

the perfusion culture set up. Problematic is that they

impede the flow of medium. Surprisingly, formation of

gas bubbles is observed during suction of medium from

the storage bottle, during transport at material transi-

tions between tubes and connectors, at the surface of

developing tissue and at the outflow of a perfusion

culture container. First gas bubbles are small so that

they are not visible to the naked eye. However, during

transport of medium they increase in size, fuse with

each other and form an embolus that can massively

impede medium flow. When gas bubbles accumulate

inside a perfusion culture container, they cause a

regional shortage of medium supply. Finally, formation

of gas bubbles in a gradient perfusion container is

leading to remarkable fluid pressure changes, although

normally two media must be transported at exactly the

same speed and pressure (Fig. 2b). Thus, an embolic

effect caused by gas bubbles in one of the channels

leads to massive pressure differences destroying in turn

the barrier function of an interposed epithelium.

To minimize arise of bubbles in a culture set up, a

gas expander module is placed before medium is

entering the perfusion culture container (Minuth et al.

2004a, b). Inside a gas expander module medium is

rising within a small reservoir and expands before it

drops down after a barrier. During this process gas

bubbles are separated from the medium and collected

at the top of the gas expander module. As a result,

culture medium leaving the gas expander module stays

oxygen-saturated but is free of gas bubbles.

Design and construction

Described MINUSHEET� tissue carriers (Fig. 1) and

perfusion culture containers (Fig. 2) were not de-

signed for one-off application but for multiple use.

Since the tools are exposed to numerous cycles of

cleaning and sterilization during years, a special

design had to be made and stringent requirements on

material quality were necessary. To prevent unwanted

cracks and alterations in material surface, tissue

carriers were finally produced by injection molding

with Pocan� thermoplastic polyester resin. The illus-

trated perfusion culture containers and related equip-

ment such as gas expander and gas exchange modules

were produced in a certified workshop by a comput-

erized numerical controled (CNC) milling machine

out of Makrolon� polycarbonate.

Featuring development of epithelia

In previous personal experiments it was observed that

epithelial cells do spread in a dish very well but often

they do not develop expected cell biological features.

To support differentiation, environment for epithelia

was improved by offering an individual extracellular

matrix or biomaterial for adhesion and by provision

with always fresh culture medium.

For example, collecting duct (CD) tubule cells

derived from the embryonic parenchyma of neonatal

kidney were isolated with the associated organ capsule

and mounted in a MINUSHEET� tissue carrier. For

the first time could be observed that these cells develop

during subsequent perfusion culture into a polarized

epithelium. Immunohistochemistry further demon-

strated that harvested epithelia express the same cell

biological features as observed in adult Principal

(P) and Intercalated Cells (IC) of the collecting duct

tubule (Herter et al. 1993; Minuth et al. 1993; Aigner

et al. 1994, 1995).

Moreover, perfusion culture experiments gave new

insights in the spatial development as well of renal

microvasculature and glomeruli (Kloth et al. 1994,

1995, 1998a; Kloth and Suter-Crazzolara 2000) as

even of intact gastric glands (Kloth et al. 1998b). In

other experiments it was investigated to what extent

regeneration can be influenced by engineered mi-

crovessels (Frerich et al. 2006, 2008) or isolated

endothelial cells (Bakowsky et al. 2005; Hayashi et al.
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2009). To evaluate perspectives of living conserva-

tion, human gingival epithelium was kept in long term

perfusion culture (Lehmann et al. 1997; Lauer 2009).

Co-culture of human oral keratinocytes with os-

teoblast-like cells gave new insights for performance

of hard and soft tissue reconstruction in future (Glaum

et al. 2010).

Factors influencing reproductive aging and the

development of fertilized eggs were screened with

anterior pituitary gland cells (Zheng et al. 2007),

oviduct epithelium (Reischl et al. 1999) and endome-

trial cells (Tiemann et al. 2005). New protocols for an

optimal matrix coating and adaptation to continuous

medium flow were elaborated for hepatocytes (Fiegel

et al. 2004; Schumacher et al. 2007; Du et al. 2008; Xia

et al. 2009). Regeneration of urothelium was analyzed

in combination with newly developed stent materials

(Sternberg et al. 2004). Finally, effects of newly

developed drugs on ciliary beat frequency (CBF) were

elaborated with the help of nasal epithelium kept in

perfusion culture (Dimova et al. 2005). Reconstruction

of cornea became possible by modulation of environ-

ment under dynamic culture conditions (Wu et al.

2014). Finally, reactions of retinal pigment epithelium

kept in perfusion culture could be registered after laser

irradiation by two-photon microscopy (Miura et al.

2013).

Renal epithelia exposed to a gradient

Past and present experiments revealed that gradient

perfusion culture answers unsolved questions in

developmental biomedicine. During the embryonic

and early fetal period epithelia are still exposed to the

same fluid at the luminal and basal sides due to still

leaky barrier characteristics. However, in maturing

epithelia a tight junction complex and up-regulated

transport features form a functional barrier. To

investigate such processes, a MINUSHEET� tissue

carrier with epithelial cells seeded on different

biomaterials was mounted in a gradient perfusion

culture container (Fig. 2b). Transportation of different

fluids through the lid and base part of the container

produces a specific environment for epithelia. When

this strategy was followed, for example intact renal

barriers could be generated (Dankers et al. 2010,

2011).

Application of a gradient perfusion culture con-

tainer made it further possible to investigate the

influence on differentiation of different fluid compo-

sition at the luminal and basal sides of embryonic renal

collecting duct (CD) epithelia (Minuth et al. 1992b,

1997a, b, 1999, 2001, 2005a; Steiner et al. 1997,

Schumacher et al. 2002a; Minuth et al. 2009a). In the

course of performed experiments it was detected that

development of a CD epithelium starts with an

unexpected long latent period of three days and needs

at least 10 days for up-regulation of typical signs of

differentiation. Further on, development can be trig-

gered by increasing concentrations of NaCl adminis-

tered at the luminal side. In such an electrolyte

gradient over days typical epithelial cell characteris-

tics such as TROMA I (Cytokeratin Endo-A; Fig. 3a),

cingulin (Fig. 3b) or Na/K ATPase a5 (Fig. 3c) were

up-regulated. Most interestingly, when fluid with an

increased NaCl concentration at the luminal side was

replaced against a low NaCl concentration, achieved

characteristics were down-regulated within few days.

This result illustrates that a luminal-basal electrolyte

gradient maintains functional features within renal

epithelia.

Challenging experiments were performed with

hydrogel mounted in a MINUSHEET� tissue carrier

Fig. 3 Features of a renal collecting duct (CD) epithelium kept

for 13 days in a gradient perfusion culture container. At the

luminal side IMDM ? aldosterone (1 9 10-7M) ? 15 mmol/l

NaCl, while at the basal side IMDM ? aldosterone (1 9 10-7

M) was transported. Immunohistochemistry shows that an

intense label for tissue-specific markers such as a TROMA I,

b cingulin and c Na/K ATPase a5 is present. Site of the basal

lamina is marked by an asterisk, while lumen is indicated by an

arrow
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to substitute the glomerular basement membrane. In

this experimental set up endothelial cells are seeded on

the one side, while podocytes were growing on the

other side. When those co-cultures were mounted in a

gradient perfusion container, development of an intact

urine-blood barrier has taken place so that related

functions can be tested under advanced culture

conditions (Bruggeman et al. 2012). Further on,

testing of special bilayered scaffolds with tailorable

properties in perfusion culture helps to optimize long

term adherence and special differentiation of renal

epithelial cells (Mollet et al. 2014).

Finally, epithelia kept in gradient perfusion culture

illustrated that commercially available media often do

not contain all of the compounds normally needed for

optimal cell differentiation. As a consequence, for

special demands culture media have to be adapted by

addition of defined electrolyte concentrations so that

an adequate degree of differentiation is achieved

(Schumacher et al. 1999, 2002b).

Pigment epithelium in combination with retina

Retina is a complex neural cell composition that is

delimited by a pigment epithelium. Since typical

morphological features cannot be maintained in static

environment of a dish, intact retina was mounted in a

tissue carrier for perfusion culture in a gradient

container (Framme et al. 2002; Spiegel et al. 2002;

Saikia et al. 2006; Jian and Jingbo 2007; Hamilton

et al. 2007; Hammer et al. 2008; Kobuch et al. 2008).

These experiments illustrated that the pigment

epithelium and neighboring neurons maintain a

perfect morphology for a culture period of at least

10 days. On the one hand these exciting findings

illustrate novel perspectives for safety testing of

newly developed pharmaceuticals designed for in-

traocular application. On the other hand these

experiments give rise to new opportunities for

investigating the wide field of retina inflammation,

aging, degeneration and repair by the help of an

adequate culture system (Klettner and Roider 2009,

2012; Klettner et al. 2009; Miura et al. 2010; Treumer

et al. 2012). In this coherence, for Example,

molecular regulation of vascular endothelial growth

factor secretion and cell biological reactions after

fucoidan exposure were investigated (Klettner et al.

2013, 2014; Dithmer et al. 2014).

Blood-retina and blood–brain barrier

Blood-retina and blood–brain barriers are of special

interest for the transport of new medicines. It has been

shown that a MINUSHEET� tissue carrier in combi-

nation with a gradient perfusion container is an ideal

tool to elaborate special features of these barrier

functions under in vitro conditions closely adapted to

nature (Steuer et al. 2004, 2005; Hamilton and Leach

2011). In turn, those experiments gave new insights in

molecular permeation and expression of multidrug

resistance protein (P-gp) and multidrug resistance-

associated protein (MRP).

Blood-air barrier

Lung epithelial cells (pneumocytes) cover alveoli in

the lung. Their specific environment in form of a

blood-air barrier can be simulated by use of a gradient

perfusion container (Gueven et al. 1996). For this

special purpose pneumocytes and endothelial cells

were seeded for example on a polycarbonate filter and

then transferred to a gradient perfusion culture con-

tainer. During these experiments development of the

tight junction complex was registered sealing in turn

the blood-air barrier. Also typical features of polar

differentiation within the epithelia were up-regulated.

It was further shown that gradient perfusion culture in

combination with pneumocytes and endothelial cells

is a valuable model to investigate dose-controlled

exposure of airborne particles. Finally, to elaborate

characteristics of barrier transport and mechanisms of

repair after alveolar injury a dose controlled air–liquid

interface (ALI) was created by the use of A549 cells

and kept in gradient perfusion culture (Tippe et al.

2002; Bitterle et al. 2006; Maier et al. 2008; Nand-

kumar et al. 2014).

Blood-gas barrier

A swim bladder assures that a fish can adjust its weight

to the water pressure and in turn to float. Culture

experiments with fish swim bladder gas gland were

successfully performed by the application of a gradi-

ent perfusion container (Prem and Pelster 2000). In

those experiments cells of gas gland were cultured on a

filter at the interface between gas on one side and

culture medium on the other side. The harvested

epithelia showed a typical polarity and functionality as
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it is known from the swim bladder gas gland in the

living fish.

Testing new drugs

Orally administered drugs have to pass the epithelial

barrier in the digestive tract before entering the

interstitium within the organism. To test the transport

of newly developed drugs across such an epithelial cell

layer, long term gradient perfusion culture ex-

periments were performed (Kloth et al. 1999, 2000).

Experiments with Caco-2 cells in gradient perfusion

culture demonstrated development of a tightly sealing

epithelium cell layer. Further it was shown that in

gradient perfusion culture reproducible results are

achieved much earlier than observed in traditional

21 day static cultures. Also the permeability coeffi-

cient of several model medicines across a Caco-2 cell

layer in gradient perfusion culture was approximately

twofold higher than observed under static culture

conditions (Masungi et al. 2004, 2009).

Renewal of epidermis/gingiva

The regeneration of epidermis and surgical repair of

skin is an especially important subject in actual

biomedicine. In order to evaluate a cost-effective

engineering of full-thickness skin grafts and the

treatment of ulcers, epidermis equivalents were

investigated by the help of gradient perfusion culture

(Kremer et al. 2001). In these experiments composite

grafts of INTEGRA� matrix and human keratinocytes

could be successfully generated in a gradient contain-

er. In a different context it was shown that develop-

ment of a gingival epithelium (Lauer 2009; Hagedorn

et al. 2009) or co-culture of keratinocytes and

osteoblast-like cells in a perfusion container reveals

much better results than obtained under static culture

conditions (Glaum et al. 2010; Glaum andWiedmann-

Al-Ahmad 2013).

Regeneration of renal parenchyma

An increasing number of patients is suffering from

acute and chronic kidney diseases. For this purpose the

implantation of stem/progenitor cells and regeneration

of damaged parenchyma are of special interest. Thus,

to test developmental capacity renal, stem/progenitor

cells were mounted between layers of a polyester

fleece to simulate an artificial interstitium during

perfusion culture (Minuth and Schumacher 2003;

Minuth et al. 2004a, b, 2005b). Scanning electron

microscopy (Fig. 4a), label by fluorescent Soybean

Agglutinin (SBA) (Fig. 4b) and semi-thin sections

(Fig. 4c) illustrate the successful generation of renal

tubules during 13 days in perfusion culture (Heber

et al. 2007; Hu et al. 2007; Minuth et al. 2007a).

Perfusion culture experiments in combination with

an artificial interstitium and chemically defined media

further showed that application of different kinds of

polyester fleeces results in various patterns of spatial

tubule development (Roessger et al. 2009). A new

finding was that formation of tubules can be induced

by aldosterone, while antagonists such as spironolac-

tone or canrenoate prevent development (Minuth et al.

2007b, 2008, 2010a; Minuth and Denk 2008). When

the contact between the mineralocorticoid receptor

(MR) and heat shock protein 90 is disturbed by

geldanamycin, formation of intact tubules is reduced,

while atypical features arise in form of cell clusters.

At that time it was a fully new aspect in

biomedicine that a polyester fleece used as an artificial

interstitium can be principally applied for the regen-

eration of renal parenchyma (Blattmann et al. 2008;

Minuth et al. 2009b). All up to date performed

experiments yet point out that development of tubules

is triggered by interactions between their basal lamina,

newly synthesized fibers of the extracellular matrix

and fibers of the polyester fleece (Minuth et al. 2010a,

b, c, d; Miess et al. 2010; Glashauser et al. 2011).

However, performed experiments dealing with

regeneration of renal parenchyma also inform that

intact development of renal tubules is not self-evident

but can be paralleled by arise of abnormal cell and

extracellular matrix features, as it was recently

detected (Minuth and Denk 2012, 2014a, b).

Finally, by keeping slices of adult kidney within a

polyester interstitium during perfusion culture it

became possible to investigate splicing of the Na–K–

2Cl cotransporter NKCC2 adapted to typical renal

environment (Schießl et al. 2013).

Stabilizing survival after transplantation

Before an implantation is made, stem/progenitor cells

are normally kept in the beneficial atmosphere of a

CO2 dependent culture medium. In contrast, when an

implantation has been performed, they are exposed to
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unbalanced interstitial fluid of diseased renal

parenchyma. To investigate buffering of this harsh

transition, renal stem/progenitor cells were exposed to

conventional IMDM (Fig. 5a) in comparison to CO2

Independent Medium (Fig. 5b) or Leibovitz’s L-15

Medium (Fig. 5c) (Minuth et al. 2013; Minuth and

Denk 2013). Analysis by transmission electron mi-

croscopy after fixation by conventional glutaraldehyde

solution showed polar differentiation and typical

features of transporting tubule cells. Formation of an

excess of vacuoles as an indicator for toxicity was not

observed. In so far the results demonstrate that CO2

Independent Media or Leibovitz’s L-15 Medium

reflect an advantageous fluid microenvironment for

isolation, implantation and initial development of

renal stem/progenitor cells.

Engineering of connective tissue

A broad research field in regenerative medicine is the

interaction between cells derived from connective tissue

and a selected scaffold used as a substitute for extracellular

matrix. In those culture set ups a variety of biodegradable

biomaterials is applied. Especially in these experiments

perfusion culture helps to prevent an overshoot of harmful

metabolites by continuous elimination and keeps in turn

fluid environment on a constant level.

Connective tissue barrier

Regarding connective tissue research it is barely

considered that it can exhibit essential barrier func-

tions. Experiments related to such barriers were

performed for example with dentin discs mounted in

a MINUSHEET� gradient perfusion container during

culture (Schmalz et al. 1996, 1999, 2001, 2002; Camps

et al. 2002; Galler et al. 2005; Demirci et al. 2008;

Vajrabhaya et al. 2009; Ulker and Sengun 2009;

Sengün et al. 2011; Ülker et al. 2013a, b; Kim et al.

2013a, b). In this series of experiments it was shown

that polymerized dental resin materials release

residual monomers, which may interact with pulp

tissue. In so far gradient perfusion culture appears to

be an appropriate technique for exploring long term

toxic effects under realistic in vitro conditions (Sen-

gün et al. 2011; Korsuwannawong et al. 2012; Kim

et al. 2013a, b; da Silva et al. 2014). A further

innovative approach is tooth regeneration that was

investigated by allogeneic stem cells (Wei et al. 2013).

In addition, new information about permeability

and degradation of gelatine membranes seeded with

fibroblasts on one side was obtained by culture in a

gradient perfusion container (Dreesmann et al. 2008).

In a similar culture set up a cell-type specific four-

component hydrogel was evaluated for the generation

of hyaline cartilage and vertebral disc repair (Aberle

et al. 2014).

Fig. 4 Generation of renal tubules at the interface of a polyester

interstitium after 13 days by perfusion culture. a Scanning

electron microscopy demonstrates development of numerous

renal tubules (T). b Fluorescent label for Soybean Agglutinin

shows numerous tubules developing within an artificial inter-

stitium. c Semithin section after Richardson staining shows

generated tubules in oblique, respectively, vertical view

between fibers of the polyester fleece (PF). Site of the basal

lamina is marked by an asterisk, while lumen is indicated by an

arrow
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Repair of hyaline cartilage

A challenge in tissue engineering is the treatment of

cartilage defects by implantation of chondrocytes

seeding within a biodegradable scaffold. The use of a

MINUSHEET� tissue carrier has demonstrated that it

can be a great help to investigate seeding of chondro-

cytes on selected scaffold materials. Moreover, it has

been shown that use of a perfusion culture container

improves cell biological quality of growing cartilage,

when the medium is permanently renewed (Sittinger

et al. 1994; Bujia et al. 1994, 1995; Sittinger et al. 1996,

1997). In those experiments basic data about the

degradation process in various scaffold materials could

be raised (Capitán Guarnizo et al. 2002). Knowing

about exact kinetics of the degradation process a

stepwise modification of scaffold materials became

possible. As a result the risk of tissue repulsion after

implantation was decreased by the application of those

optimized scaffold materials (Rotter et al. 1998, 1999;

Kreklau et al. 1999; Duda et al. 2000, 2004; Haisch

et al. 2002; Gille et al. 2005). It was finally shown that

electrospun polymer scaffolds have proven to be

particularly advantageous (Schneider et al. 2011, 2012).

In this coherence it was also detected that applica-

tion of natural extracellular matrix such as a collagen

sponge does not improve the quality of generated

cartilage (Fuss et al. 2000). In contrast, scaffold

materials with modified polyethylene coating (Röpke

et al. 2007) or a gelatine-based Spongostan� (Anders

et al. 2009) revealed much more cartilage specific

features than observed without surface treatment. In

this context it was observed that synovial fibroblasts

are able to adapt synthesis of extracellular matrix

(Steinhagen et al. 2010). Finally, engineering of

cartilage constructs by means of perfusion culture

revealed to be an ideal model to investigate parameters

affecting destructive joint diseases (Schultz et al.

1997; Risbud and Sittinger 2002; Bücheler and Haisch

2003).

bFig. 5 Transmission electron microscopy demonstrates renal

tubules generated at the interface of a polyester interstitium after

13 days of perfusion culture in a Iscove’s Modified Dulbecco’s

Medium, b CO2 Independent Medium and c Leibovitz’s L-15

Medium. In all cases generated tubules exhibit a polarized

epithelium. Neighboring cells are separated by a tight junction

complex (arrow head). The basal lamina is indicated by an

asterisk
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Formation of bone

Not only for cartilage but also for bone engineering

MINUSHEET� perfusion culture technique was suc-

cessfully applied. For example, developmental ca-

pacity of osteoblasts and osteocytes was investigated

with ceramic materials (Uemura et al. 2003; Wang

et al. 2003; Leukers et al. 2005a; Yeatts and Fisher

2011; Bernhardt et al. 2011), decellularized spongeous

bone (Seitz et al. 2007), collagen membranes (Rotha-

mel et al. 2004) and mineralized collagen (Gelinsky

et al. 2004; Bernhardt et al. 2008). Further hydrox-

yapatite scaffolds (Leukers et al. 2005b; Detsch et al.

2008; da Silva et al. 2010a, b), poly-d,l-lactic-co-

glycolic acid (PLGA) sheets (Shearer et al. 2006), iron

based metals (Quadbeck et al. 2010), bioactive glass

(Yue et al. 2011), textile chitosan (Heinemann et al.

2008, 2009, 2010), 3D biphasic calcium phosphate

scaffolds (Rath et al. 2012) and other biocorrodible

bone replacement materials (Farack et al. 2011) were

successfully applied in combination with perfusion

culture.

Special focus was directed to production of opti-

mized scaffold materials to stimulate cell colonization

and formation of extracellular matrix (Mateescu et al.

2012; Campos et al. 2013). An important observation

for clinical application was that bone development can

be influenced by the process of sterilization, when

scaffold material is applied consisting of poly(D,L-

lactic-co-glycolic acid (PLGA) (Shearer et al. 2006).

A further aspect was to elaborate by perfusion culture

why formation of a biofilm occurs on titanium surfaces

(Astasov-Frauenhoffer et al. 2012).

Osteoblasts in combination with a scaffold often

form thick layers of tissue. A recurrent problem is that

unstirred and consequently harming layers of fluid

within growing tissue develop. For compensation the

continuous provision with nutrition and oxygen must

be substituted by transport of medium in pulses or by

feedback loops so that bone constructs with an

acceptable cell biological quality can develop (Volk-

mer et al. 2008, 2012).

Development of muscular tissue

Normally a car is not suitable for all terrains. In

analogy, only three papers were found dealing with the

regeneration of muscular tissue in combination with

the MINUSHEET� perfusion culture system. In

detail, when a layer of gastric mucosa was mounted

in a tissue carrier and kept in a perfusion culture

container, it was observed that not only gastric glands

but also smooth muscular tissue are developing within

the lamina propria (Kloth et al. 1998b). Further on,

when formation of vessels in brain was investigated,

the seeding of cerebral pericytes on selected bioma-

terials resulted in a high expression of site-specific

pericytic aminopeptidase N/pAPN (Ramsauer et al.

1998). Finally, proliferation of smooth muscle cells

was investigated on special electrospun polymer

scaffolds (Rüder et al. 2012).

Generation of nervous tissue

A central problem in neurology research is the escape

of dopamine synthesis during the course of Parkin-

son’s disease. As a consequence, to investigate

external influences on dopamine synthesis in mesen-

cephalic neurons, MINUSHEET� perfusion culture

was successfully performed (Blöchl and Sirrenberg

1996). For example, it was demonstrated that neu-

rotrophins stimulate the release of dopamine via Trk

and p75Lntr receptors. Further it could be demon-

strated by perfusion culture with hippocampal neurons

and cells of the pheochromacytoma cell line PC 12

that admixture of exogenous neurotrophins has

positive feedback effects on secretion of synthesized

neurotrophins. This pathway seems to be triggered by

an activation of tyrosine kinase neurotrophin receptors

(Canossa et al. 1997). It was further shown that

alterations in sodium concentration play an important

role in secretion of neurotrophins (Hoener 2000).

Perfusion culture was also applied to investigate

differences in secretion between nerve growth factor

and brain-derived neurotrophic factor (Griesbeck et al.

1999). Further SH-SY5Y human neuroblastoma cells

exhibited differentiation into a neuronal-like state,

when long term perfusion culture was applied (Con-

stantinescu et al. 2007). In those experiments the

cultures were kept for more than 2 months in an active

state. In other series of experiments RAT-1 fibroblasts

were investigated expressing Cypridina noctiluca

luciferase (CLuc) driven by the promoter of the

circadian clock gene Mma11 (Yamagishi et al. 2006).

The experiments revealed that the CLuc reporter assay

in combination with the applied perfusion culture is an
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appropriate technique to test newly developed medica-

tions. Impressing results were obtained, when fish

pituitary explants were kept in perfusion culture to

investigate vasotocin and isotocin release (Kalamarz-

Kubiak et al. 2011).

Maintenance of retina

Retina has a complex neural cell microarchitecture

that is delimited by a pigment epithelium. Previous

experiments have shown that typical morphological

features cannot be maintained when culture is per-

formed in static environment of a dish. For that reason

intact retina was mounted in a tissue carrier to incubate

it in a gradient perfusion culture container (Framme

et al. 2002; Spiegel et al. 2002; Saikia et al. 2006; Jian

and Jingbo 2007; Hamilton et al. 2007; Hammer et al.

2008; Kobuch et al. 2008). Those experiments

revealed that retina neurons and the pigment epithe-

lium maintain a perfect morphology for a culture

period of at least 10 days. These new findings

illustrate new perspectives for safety testing of newly

developed pharmaceuticals designed for intraocular

application.

In addition, these experiments give rise to new

opportunities for investigating the wide field of retina

inflammation, aging, degeneration and repair by the

help of an adequate culture system (Klettner and

Roider 2009; Klettner et al. 2009, 2012; Miura et al.

2010; Treumer et al. 2012. In this coherence for

example molecular regulation of vascular endothelial

growth factor secretion and cell biological reactions

after fucoidan application were investigated (Klettner

et al. 2013, 2014; Dithmer et al. 2014).

Conclusion

To improve the environment for cells and developing

tissues under in vitro conditions, the MINUSHEET�

perfusion culture system was developed 25 years ago.

To stay versatile, a biomaterial for optimal cell

adhesion is selected, mounted in a tissue carrier and

then transferred to a 24 well culture plate. Seeding of

cells is performed in static environment, while

generation of tissue is made in various types of

perfusion culture containers. To prevent an overshoot

of paracrine factors a continuous transport of always

fresh culture medium is performed. In the meantime

numerous groups utilized the introduced system. A

multitude of published papers illustrates that a variety

of specialized tissues can be produced in an excellent

cell biological quality urgently needed in tissue

engineering, biomaterial research and advanced phar-

maceutical drug testing.

Final remarks

In 1992 the project received the Philip Morris research

award ‘Challenge of the Future’ in Munich/Germany.

To introduce developed tools on the market,

Katharina Lorenz-Minuth founded non-profit-orien-

tated Minucells and Minutissue Vertriebs GmbH (D-

93077 Bad Abbach/Germany, www.minucells.com)

by private sources.

Up to date more than 250 papers were published

dealing with the MINUSHEET� perfusion culture

system. A list of these different culture set ups is given

in the data bank ‘Proceedings in perfusion culture’:

http://www.uni-regensburg.de/Anatomie/Minuth/

proceedings.htm

For correct use of the MINUSHEET� perfusion

culture system W.W. Minuth and L. Denk wrote a

book entitled ‘Advanced Culture Experiments with

Adherent Cells: From single cells to specialized

tissues in perfusion culture’. Open access publishing,

University of Regensburg, 2011, ISBN Nr. 978-3-

88246-355-2, 417 pages. URN: ubn:de:bvb:355-epub-

313392. This manuscript can be downloaded as PDF

file without costs and further obligations:

http://epub.uni-regensburg.de/31339/

Data raised by the MINUSHEET� perfusion cul-

ture system were earlier reviewed:

Minuth WW, Denk L, Glashauser A (2010) A

modular culture system for the generation ofmultiple

specialized tissues. Biomaterials 31:2945-2954

Minuth WW, Denk L (2012) Supportive develop-

ment of functional tissues for biomedical research

using the MINUSHEET� perfusion system. Clin

Transl Med 1:22
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Bitterle E, Stöger T, Jakob T, Behrendt H, Horsch M,

Beckers J, Ziesenis A, Hültner L, Frankenberger M,
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