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Numerous factors influence cell functions and tissue development in culture. A modular culture system
has been developed to allow the control of many of these important environmental parameters. Optimal
adhesion of cells is obtained by selecting an individual biomaterial. Selected specimens are mounted in
a tissue carrier in order to protect it against damage during handling and after seeding cells, the carriers
can be used in a series of compatible perfusion culture containers. This technique allows the simple
bathing of growing tissue under continuous medium transport and the exposure of epithelia to
a gradient with different fluids at the luminal and basal sides. A further container is made of transparent
material to observe microscopically the developing tissue. In addition, a special model features a flexible
silicone lid to apply force to mimic the mechanical load required for developing connective and muscular
tissue. Perfusion culture of stem/progenitor cells at the interface of an artificial interstitium made by
a polyester fleece results in the spatial development of tubules. During long term culture over weeks the
growing tissue is continuously exposed to fresh nutrition and respiratory gas. The medium is transported
in a constant flow or in pulses, preventing unstirred layers of fluid. A variety of applications of this
modular system, described in this paper, demonstrates that the biological profile of cells and tissues can
be strongly improved when perfusion culture with a permanent provision of fresh medium is applied.

� 2010 Elsevier Ltd. All rights reserved.
1. Introduction

The conditions of cell cultures for the study of cellular interac-
tions with innovative biomaterials in the development of new
strategies for therapeutic regeneration of epithelial, connective,
muscular or nervous tissue and the investigation of cellular func-
tions under the influence of newly developed pharmaceuticals are
extremely important. While the expansion of isolated cells in the
static environment of a culture dish poses no great difficulties,
developing tissues especially in combination with biomaterials
often show severe morphological, physiological and biochemical
changes caused by dedifferentiation [1–8]. This process is not due
to a single factor, but is highly dependent on the selected bioma-
terial, cellular adhesion, intercellular communication and culture
conditions such as nutrition, adapted respiratory gas or individual
rheological stress [9–14]. Since all these factors have to
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complement one another advanced techniques are needed to offer
individual culture environments supporting tissue-specific
development.

According to the multitude of factors governing cell and tissue
development a system is presented here that adjusts the culture
conditions to many specific needs. The concept is based on tissue
carriers including selected biomaterials for an optimal cell adhesion
and communication (Figs. 1–3). In different perfusion containers an
individual fluid environment can be simulated improving func-
tional differentiation of cultured cells and tissues (Figs. 4 and 5).
The modular system provides a highly flexible basis for the culture
of cells and the generation of multiple highly specialized tissues. On
the other hand the presented system bridges a methodical gap
between frequently used static cell culture, advanced tissue culture
and modern microreactor technology. All of the tools are designed
for multiple uses and can be sterilized in an autoclave.

2. Selecting a biomaterial support system

One prerequisite for optimal cell and tissue development in the
organism is a positive interaction with the extracellular matrix.
Under in vitro conditions a selected biomaterial replaces the
natural extracellular matrix. This may influence the development of
important functional features in a good or bad manner. Culture
experiments have elucidated that a variety of different biomaterials
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Fig. 1. Schematic illustration of mounting a Minusheet� tissue carrier. (a) First an individual biomaterial supporting optimal cell development is selected. (b,c) For mounting the
biomaterial measuring 13 mm in diameter is placed in the base part of a tissue carrier and fixed by a tension ring. The base part of a mounted tissue carrier rests with protrusions at
the bottom of a dish. (d) Vertical view and (e) view to the surface of a mounted tissue carrier.
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such as synthetic polymers, decellularized matrix, biodegradable
scaffolds [15–21], ceramics [22–24] or metals [1] may act as suitable
substitutes for the extracellular matrix. Such biomaterials occur in
form of filters, nets, foils, fleeces or foams to investigate their
influence on growth and differentiation of cells and tissues during
culture.

To stay compatible with a 24-well culture plate selected
biomaterials can be punched out to a diameter of 13 mm (Fig. 1a). In
order to prevent damage during handling and growth the selected
specimen is then transferred to the base part of a Minusheet� tissue
carrier (Fig. 1 b, c). Pressing down a tension ring the biomaterial is
fixed in position (Fig. 1 d, e). After mounting the tissue carrier is
enveloped and sterilized for example in an autoclave. Subsequently
the tissue carrier can be stored or used immediately for the
intended culture protocol.

For cell seeding the mounted tissue carrier is placed by a forceps
in a 24-well culture plate (Fig. 2a). To concentrate cells on the tissue
carrier culture medium is added to a level so that the selected
biomaterial is just wetted. Then cells are added within a small
droplet of medium. Culture is started using conventional media
inside a CO2-incubator until adhesion becomes perfect. The kind
and degree of cell adhesion can be registered by fluorescence
labeling (Fig. 2b–e) [25]. An individual culture experiment shows
propidiumiodide-labeled nuclei of MDCK cells grown in the same
medium for 3 days on 4 different biomaterials such as glass
(Fig. 2b), thermanox (Fig. 2c), white (Fig. 2d) and black (Fig. 2e)
polycarbonate. Each of the specimens exhibits an individual growth
pattern ranging between confluent attachment (Fig. 2b), dome
(Fig. 2c), blister (Fig. 2d) and cluster (Fig. 2e) formation. This basic
experiment shows the enormous influence of a selected biomate-
rial on the growth pattern of cells.

3. Tissue-specific adhesion

When cells are cultured in the static environment of a conven-
tional dish, the side of cells resting on the bottom receives
a significantly reduced supply of nutrients and oxygen (Fig. 3a). The
situation is improved, when a tissue carrier is used, since cells are
provided now from the upper and lower side by medium (Fig. 3b).
This way a standard culture is started by seeding cells onto the
upper side of the selected biomaterial. When a tissue carrier is
turned, cells can be seeded also on the basal side (Fig. 3c). Thereby
co-culture with two different cell types becomes possible (Fig. 3d)
[26,27]. Furthermore, a slice of tissue can be mounted between two
pieces of a woven net of fleeces (Fig. 3e) [28,29]. Flexible materials
with adherent cells are clamped in a modified tissue carrier like the
skin on a drum (Fig. 3f) [30,31]. Thus, a variety of biomaterials can
be used in combination with cells on a mounted tissue carrier.

4. Compatible perfusion culture containers

The static environment within a culture dish leads to an
uncontrollable increase of metabolites and a decrease of nutrition
during time. To offer a constant provision with always fresh
medium a tissue carrier with seeded cells is used in a perfusion
container during long term culture. All of the containers are
machined out of Makrolon� so that they can be autoclaved for
multiple uses. The exact geometrical placement of the tissue carrier
within a perfusion culture container guarantees a constant provi-
sion with fresh nutrition from all sides. One type of container
allows the simple bathing of cells or tissue under continuous
medium perfusion (Fig. 4a). In a gradient container the tissue
carrier is placed between the base and lid so that the luminal and
basal side can be provided with individual media mimicking
a natural environment for epithelia (Fig. 4b). Another culture
container is made of a transparent lid and base allowing the
microscopic observation of the developing tissue (Fig. 4c). A special
container exhibits a flexible silicone lid (Fig. 4d). Applying force to
this lid by an eccentric rotor simulates a mechanical load as
required in cartilage and bone regeneration. Shaped tissues such as
an auricle or different forms of cartilage can be generated in
a special tissue engineering container (Fig. 4e). Finally, spatial



Fig. 2. (a) Tissue carriers including different biomaterials in a 24-well culture plate.
Pattern of propidiumiodide-labeled MDCK cells grown for 3 days on 4 different
biomaterials mounted in a tissue carrier. The individual growth pattern is ranging
between (b) confluent attachment, (c) dome, (d) blister and (e) cluster formation.

Fig. 3. Variations of cell seeding. (a) Cells resting on the bottom of a conventional dish
receive a reduced supply of nutrients and oxygen. (b) On a tissue carrier cells are
provided from the upper and lower side. (c) Turning a tissue carrier cells can be seeded
also on the basal side. (d) Using two different cell types co-culture becomes possible by
seeding cells on the upper and lower side. (e) A slice of tissue is mounted between two
nets. (f) Flexible materials are fixed on a modified tissue carrier.
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development of tubules derived from renal stem/progenitor cells is
promoted within a perfusion container at the interface of an arti-
ficial interstitium made of a polyester fleece (Fig. 4f) [28,29]. To
maintain the desired temperature of 37 �C within a perfusion
culture container a heating plate (MEDAX-Nagel, Kiel, Germany)
and a cover lid (not shown) is used (Fig. 5).

5. Transport of culture medium

Permanent transport of culture medium is best accomplished
using a slowly rotating peristaltic pump (ISMATEC, IPC N8, Wer-
theim, Germany), which is able to deliver adjustable pump rates of
0.1–5 ml per hour. During long term culture the growing tissue is
always exposed to fresh medium, while the metabolized medium is
collected in a separate waste bottle and is not re-circulated (Fig. 5).
On the passage through the container the medium flows along an
inserted tissue carrier. This way a growing tissue is continuously
supplied with fresh medium preventing an unphysiological accu-
mulation of metabolic products and an overshoot of paracrine
factors. Thus, a natural exchange of fluid is simulated, molecules
with high affinity are concentrated around the developing tissue,
while factors with low affinity are eliminated by the effluent
medium.
6. Keeping constant pH

Cultures in a CO2-incubator are usually buffered by a system
consisting of a relatively high amount of NaHCO3 and a 5%-CO2

atmosphere to maintain a constant pH of 7.4. If such a formulated
medium is used for perfusion culture outside a CO2-incubator, the
pH shifts from the physiological range to alkaline values due to the
low content of CO2 (0.3%) in atmospheric air. For that reason any
medium used outside a CO2-incubator has to be stabilized by
reducing the NaHCO3-concentration and/or by adding biological
buffers such as HEPES (GIBCO/Invitrogen, Karlsruhe, Germany) or
BUFFER ALL (Sigma–Aldrich–Chemie, München, Germany). The
necessary amount can be determined by admixing increasing
amounts of biological buffer solution to an aliquot of medium and
letting it equilibrate over night on a thermo plate under atmo-
spheric air. For example, application of 50 mmol/l HEPES or an
equivalent of BUFFER ALL (ca. 1%) to IMDM (Iscove’s Modified
Dulbecco’s Medium, GIBCO/Invitrogen) will maintain a constant pH
of 7.4 throughout long term perfusion culture under atmospheric
air on a laboratory table.
7. Equilibration of oxygen

To obtain optimal equilibration of the pH, pO2 and pCO2 in
a perfusion culture set-up, a medium such as IMDM is pumped
through a gas-permeable silicone tube. This silicone tube provides
a large surface for gas exchange by diffusion due to a thin wall
(1 mm), the small inner diameter (1 mm) and its extended length
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(1 m). Analysis of IMDM (3024 mg/l NaHCO3, 50 mmol/l HEPES)
equilibrated against atmospheric air in such a standard perfusion
culture set-up shows partial pressures of 160 mmHg O2 and
12 mmHg CO2 [32].

8. Modulation of oxygen

Growing cells and tissues have individual oxygen require-
ments. For that reason it is important that the oxygen content
can be adapted. The technical solution is a gas exchanger module
with a gas inlet and outlet housing inside a spiral of long thin-
walled silicon tube for medium to pass through (Fig. 5). Since
the tubing is highly gas-permeable, it guarantees optimal
diffusion of gases between culture medium and surrounding
atmosphere during run. The desired gas atmosphere within the
exchanger is maintained by a constant flow of a specific gas-
mixture through the module. This way the content of oxygen or
any other gases can be modulated in the medium by diffusion
preventing infection by microorganisms. For example, using this
simple protocol it became possible to decrease the oxygen
partial pressure within the medium under absolutely sterile
conditions [32].

9. Elimination of gas bubbles

During long term perfusion culture it is observed that gas
bubbles form not only during suction of medium but also at
material transitions. These microscopic gas bubbles are trans-
ported with the culture medium, increase in size and eventually
form an embolus that massively impedes medium flow. Gas
bubbles can also accumulate in the culture container leading to
a regional shortage of medium supply, causing erratic breaks in
the fluid continuum and resulting in massive pressure changes. In
a gradient perfusion culture set-up, where two media have to be
transported at exactly the same speed and pressure such effects
can lead to pressure differences, which in turn destroy the
growing tissue [33].

To avoid the concentration of gas bubbles within a perfusion
culture container a gas expander module was developed that
removes it from the medium (Fig. 5). When medium is entering the
gas expander module, it rises within a small reservoir and expands
before it drops down a barrier. During this process gas bubbles are
separated from the medium and collected at the top of the gas
expander module. Medium leaving the container is oxygen-satu-
rated but bubble-free [33].

10. Tissue-specific applications of the perfusion culture
technology

10.1. Epithelia

10.1.1. Development of epithelia in perfusion culture
Minusheet� tissue carriers and perfusion culture systems were

developed to improve environmental factors affecting differentia-
tion of renal derived embryonic cells [34,35]. Applying this new
technique for the first time cell biological features could be raised as
Fig. 4. Use of a tissue carrier in different perfusion culture containers. (a) In a first type
of perfusion culture container the tissue is provided with always fresh medium. (b) In
a second type the tissue is exposed to a luminal/basal medium gradient. (c) In
a microscope container with a transparent lid and base growing tissue can be
observed. (d) A flexible lid made of silicone and a rotating eccenter expose the tissues
to liquid pressure differences. (e) Tissues are shaped on a three-dimensional bioma-
terial during perfusion culture. (f) A polyester fleece is featuring an artificial inter-
stitium in a perfusion container for the spatial development of tissue.



Fig. 5. Perfusion culture set-ups are self-contained and can be used on a laboratory table. A thermo plate and a Plexiglas lid (not shown) maintain the desired temperature. During
culture a peristaltic pump transports the medium (1.25 ml/h) from the storage bottle on the left side to the waste bottle on the right side. Respiratory gases can be adapted by a gas
exchange module containing a silicone tube. Gas bubbles in the transported culture medium are eliminated in a gas expander module before reaching the perfusion culture
container. 1 – storage medium bottle, 2 – peristaltic pump, 3 – gas exchange, 4 – expander for gas bubble elimination, 5 – thermoplate, 6 – perfusion culture container, 7 – waste
medium bottle.
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found in adult Principal and Intercalated cells of the renal collecting
duct [31,36–39]. Special attention was then directed to the selection
of improved biomaterials supporting an optimal adhesion for cells in
perfusion culture [25]. In consequence, these new experiences
brought new insights in the spatial development of glomeruli and
microvasculature made by perfusion culture [40–43].

Performing perfusion culture vessel formation [44,45] and
regenerative activity of endothelium [46,47] could be tested under
improved experimental conditions. To investigate living conserva-
tion for tissue engineering human gingival epithelium was gener-
ated in long term perfusion culture [48,49]. Factors affecting
reproductive aging and the development of fertilized eggs were
investigated with anterior pituitary gland [50], oviduct epithelium
[51] and endometrium [52]. Optimal matrix coating and influences
of continuous medium flow were elaborated for hepatocytes [53–56].
Regeneration of urothelium was investigated in combination with
newly developed stent material [57]. Effects of new pharmaceuti-
cals on ciliary beat frequency (CBF) were performed with differ-
entiated nasal epithelium kept in perfusion culture [58].

10.1.2. Epithelia in gradient perfusion culture
During fetal development epithelia are exposed to the same

medium at the luminal and basal side. In contrast, when the
junctional complex in adult epithelia is sealing during differentia-
tion different media are yet present at the luminal and basal side. In
comparison, at the bottom of a conventional culture dish all sides of
an epithelia cell are exposed to the same medium. This specific
situation leads to a permanent short circuit promoting growth but
suppressing polar differentiation [59–64]. To overcome this
problem and to simulate a specific environment for epithelia
Minusheet� gradient perfusion culture was developed.

10.1.3. Renal collecting duct epithelium
Experiments with gradient perfusion culture were started to

investigate the influence of different fluids at the luminal and basal
side of an embryonic renal collecting duct (CD) epithelium
[30,31,35,65–71]. It was found that the process of development in
a CD epithelium has an unexpected long latent period of 3 days and
takes at least 10 days until differentiation is completed. The
development is dependent on increasing NaCl concentrations
offered at the luminal side (Fig. 6). Only in a continuous electrolyte
gradient over days specific features such as binding for PNA-lectin
and site-specific monoclonal antibodies were found to be up-
regulated. However, when high NaCl content at the luminal side
was replaced against low NaCl content specific features were down-
regulated. Thus, gradient perfusion culture made it for the first time
feasible to investigate the development of an embryonic renal
epithelium under realistic conditions. In addition, learning from the
tissue-specific development of epithelia the used media were
adapted to the individual physiological requirements in further
successfully performed perfusion culture experiments [32,72,73].

10.1.4. Retina
Retina is a complex tissue lined by a pigment epithelium that

cannot be maintained in the static environment of a culture dish
over prolonged periods of time. For that reason intact retina was
mounted in a tissue carrier and cultured in a gradient perfusion
container [74–80]. It was demonstrated that neurons and pigment
epithelium maintain a perfect morphology for at least 10 days. This
experimental outcome illuminates new perspectives for safety
testing of pharmaceuticals designed for intraocular application and
shows challenging experimental options in the wide field of retina
degeneration, damage and repair.

10.1.5. Blood–retina and blood–brain barrier tests
Blood–retina and blood–brain barrier are crucial for the trans-

port of pharmaceuticals. To simulate blood–retina and blood–brain
barrier under realistic in vitro conditions gradient perfusion culture
is an ideal technique [81,82]. The experimental set-up exhibited
new permeation features and displayed an intact polarized
expression of efflux pumps such as multidrug resistance protein
(P-gp) and multidrug resistance-associated protein (MRP).

10.1.6. Blood–air barrier
A specific environment for pneumocytes at the blood–air barrier

was simulated in gradient perfusion culture [26]. When pneumo-
cytes and endothelial cells were co-cultured on a polycarbonate
filter within a gradient perfusion container a junctional complex
was found to develop sealing tightly the blood–air barrier. In
addition, characteristic features of polar differentiation within the
epithelia were up-regulated. It was concluded that gradient
perfusion culture in combination with pneumocytes and endo-
thelial cells is a realistic model to investigate dose controlled
exposure of airborne particles. Moreover, features of a dose



Fig. 7. Generation of renal tubules at the interface of an artificial interstitium. (a)
Schematic illustration shows that numerous tubules (T) develop between layers of
a polyester fleece (PF). (b) Toluidin blue stained cryosection of generated tubules. (c)
Soybean agglutinin (SBA)-labeled whole mount specimen of generated tubules. The
tubules exhibit a basal lamina (asterisk) and a lumen (arrow).

Fig. 6. Cell biological features of an embryonic renal collecting duct (CD) epithelium
kept for 13 days in a gradient luminal: IMDM þ aldosterone (1 � 10�7

M)þ 15 mmol/l
NaCl/basal: IMDM þ aldosterone (1 �10�7

M). Immunohistochemistry shows a positive
label for (a) cingulin, (b) TROMA I, (c) Na/K ATPase and (d) laminin y1. In contrast,
perfusion culture of epithelia with same media at the luminal and basal side do not
develop these features. Basal lamina (asterisk), lumen (arrow).
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controlled air–liquid interface (ALI) were investigated with A549
cells to elucidate barrier transport and repair mechanisms after
alveolar injury [83–85].

10.1.7. Blood–gas barrier
Experiments on fish swim bladder gas gland were successfully

performed in a gradient perfusion culture container [86]. In this
case cells of gas gland were cultured on a filter at the interface
between gas and fluid medium. The epithelium revealed a typical
polarity and functionality as observed in the environment of swim
bladder gas gland in fish.

10.1.8. Pharmaceutical application
In the organism most of the administered pharmaceuticals have

to pass an epithelial barrier. To test the transport of drugs through
an epithelial cell layer long term gradient perfusion culture was
performed [87,88]. It was further detected that gradient perfusion
culture with Caco-2 cells was leading to tightly sealing epithelia
[89,90]. Gradient perfusion culture revealed reproducible results
much earlier than observed in traditional 21-day static cultures.
The permeability coefficient of several model pharmaceuticals
across Caco-2 cells was approximately twofold higher than
obtained under static conditions.

10.1.9. Renewal of skin
Renewal of skin is an important research area in actual biomedi-

cine. Thus, epidermis equivalents were generated using gradient
perfusion culture [91]. Composite grafts of INTEGRA� matrix and
human keratinocytes were cultured in a gradient container in order to
evaluate better the potential for the cost-effective engineering of full-
thickness skin grafts and the treatment of ulcers.

10.1.10. Regenerating vessels
Development on micro-vessels was investigated within

a gradient perfusion container [44,45]. In these experiments the
spatial generation of capillary-like structures was obtained. It was
further shown that perfusion of medium in pulses promotes much
better the development of a capillary-like network than a contin-
uous transport.

10.1.11. Non-epithelial barrier
Beside the epithelial cell layers also other tissues exhibit impor-

tant barrier functions. Experiments related to such non-epithelial
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barriers were performed with dentin discs in a gradient perfusion
container [92–100]. Actual data show that polymerized dental resin
materials release residual monomers that may interact with pulp
tissue. In consequence, this modified dentin barrier test revealed as
an ideal model to investigate long term toxic effects of new bioma-
terials under realistic in vitro conditions. Furtheron, new insights in
permeability testing and degradation of gelatin membranes were
obtained by using fibroblasts in a gradient perfusion container [101].

10.1.12. Generation of tubules at the interface of an artificial
interstitium

To investigate the spatial development of renal tubules, an
advanced perfusion culture set-up was developed (Figs. 4f and 7a).
In these experiments renal stem/progenitor cells were mounted
between two layers of polyester fleece. The interface between them
serves as an artificial interstitium [69,102,103]. Numerous experi-
ments demonstrate that the culture at the interface of an artificial
interstitium is an effective technique to investigate the process of
tubule regeneration (Fig. 7b) [104,105]. Surprisingly, the process of
tubule formation is induced by aldosterone [105–107]. Since
antagonists such as spironolactone or canrenoate prevent tubulo-
genic development, the hormonal signal is mediated via the
mineralocorticoid receptor (MR) [108,109]. Disturbing the molec-
ular interaction between MR and heat shock protein 90 by gelda-
namycin results in a lack of tubule formation.

The interface between two layers of polyester fleece promotes
the spatial development of numerous tubules [108–110]. Using an
artificial interstitium the surrounding of generating tubules is not
stacked by a coat of extracellular matrix proteins. Thus, for the first
time it was possible to investigate the synthesis of interstitial
molecules such as collagen type III during generation of tubules
[111]. Actual data show that generating tubules avoid a direct
contact to each other by keeping a minimal distance during spatial
development (Fig. 7c). The separation is caused by a link between
the basal lamina of tubules and newly synthesized fibers of the
extracellular matrix. Recent experiments show that different kinds
of polyester fleeces reveal challenging options for regenerating
tubules in biomedicine [29].

11. Connective tissue

A great issue in regenerative medicine is the treatment of
cartilage and bone defects by artificial tissue constructs containing
various scaffold materials. In numerous cases perfusion culture
could improve the quality of generated tissues.

11.1. Cartilage

To generate cartilage constructs for implantation bioresorbable
scaffolds were frequently applied in combination with chondro-
blasts/-cytes within a culture dish. However, in the static environ-
ment an increasing concentration of biodegraded molecules such
as lactate is liberated resulting in a damage of the growing tissue
during time. In consequence, to eliminate continuously bio-
degraded molecules Minusheet� perfusion culture was applied
successfully for the generation of cartilage [18,19,112,113]. Applying
this method it became possible to elaborate realistic date con-
cerning kinetics of the degradation process from different scaffold
materials [114,115]. In addition, by perfusion culture the cell bio-
logical quality of generated tissue could be improved by stepwise
modifications of the scaffold material so that the risk for implan-
tation could be minimized [116–122]. Surprisingly, it was shown
that the application of natural extracellular matrix such as
a conventional collagen sponge does not improve the quality of
generated cartilage [123]. In contrast, scaffold materials with
modified polyethylene coating [124] or gelatine-based Spongostan
[21] focused in excellent results. Further on, the generation of intact
cartilage constructs by perfusion culture revealed as an ideal model
to investigate factors affecting destructive joint diseases [125–127].

11.2. Bone

In bone tissue engineering described perfusion culture tech-
nique was applied to investigate the development of osteoblasts on
ceramic materials [22–24], decellularized spongeous bone [128],
collagen membranes [129], mineralized collagen [130,131],
hydroxyapatite scaffold [132,133], PLGA sheets [134], laminin-
coated polycarbonate membranes [27] and textile chitosan scaf-
folds [135,136]. Most important for clinical applications are exper-
iments related to effects influencing tissue development after
sterilization of scaffold materials consisting of poly-D,L-lactic-co-
glycolic acid [134]. A further problem is the occurrence of unstirred
layers of fluid within a tissue engineered construct, since it
develops during perfusion culture a permanently increasing
thickness. For that reason a constant provision with nutrition and
oxygen plays an essential role during generation of the construct
[137]. Last but not least, learning from bone in perfusion culture
may lead to an effective strategy for the regeneration of dentin [96].

12. Muscular tissue

Only two papers were found dealing with the generation of
muscular tissue in perfusion culture. During culture of gastric
mucosa it was observed that smooth muscular tissue is developing
in the lamina propria [64]. Using an improved biomaterial for cell
anchorage numerous cerebral pericytes were found to express site-
specific pericytic aminopeptidase N/pAPN [138].

13. Nervous tissue

A central theme in neurology is the escape of dopamine
synthesis during Parkinson disease. To investigate expression of
dopamine Minusheet� perfusion culture was performed success-
fully with mesencephalic neurons [139]. In this coherence it was
found that neurothrophins stimulate the release of dopamine via
Trk and p75Lntr receptors. Further it was shown that in hippo-
campal neurons and the pheochromacytoma cell line PC 12 appli-
cation of exogenous neurotrophins exerts positive feedback effects
on secretion of synthesized neurotrophins. This pathway is
mediated via an activation of tyrosine kinase neurotrophin recep-
tors [140]. An important role plays the influence of sodium in an
activity-dependent secretion of neurotrophins [141]. Furthermore,
differences in the secretion between nerve growth factor and brain-
derived neurotrophic factor were observed [142]. Finally, SH-SY5Y
human neuroblastoma cells were found to differentiate into
a neuronal-like state in long term perfusion culture [143]. The cells
could be kept in an active state for more than 2 month without the
need of passage. In other coherence RAT-1 fibroblasts were inves-
tigated expressing Cypridina noctiluca luciferase driven by the
promoter of a circadian clock gene Mma11 [144]. In so far the CLuc
reporter assay in combination with described perfusion culture
appears as an innovative pharmacological tool for drug discovery.

14. Conclusions

This paper has described a modular system to improve the envi-
ronment of cultured cells and tissues used in areas such as tissue
engineering and microreactor technology; a fuller analysis of the
literature on this Minusheet� perfusion culture technology is listed:
www.biologie.uni-regensburg.de/Anatomie/Minuth/proceedings.htm.

http://www.biologie.uni-regensburg.de/Anatomie/Minuth/proceedings.htm
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The technical concept is based on individually selected biomaterials,
tissue carriers and different kinds of compatible perfusion culture
containers. During long term culture the growing tissue is contin-
uously exposed to fresh medium.
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