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Abstract 

In this study we show that the aminopeptidase N of cerebral pericytes (pAPN) associated with 
the blood-brain barrier (BBB) is downregulated in pericytic cell cultures. This observation is 
in accordance with previous data describing comparable in vitro effects for BBB-specific 
enzymes of endothelial or pericytic origin, such as -glutamyl transpeptidase or alkaline 
phosphatase. By polymerase chain reaction and in situ hybridization we were able to 
determine that the down-regulation of pAPN occurs at the posttranscriptional level. The 
mRNA of pAPN was found to be constitutively expressed even when the protein is no longer 
detectable. Culturing the pericytes in an endothelial cell-conditioned medium allowed pAPN 
to be reexpressed. However, the reexpression effect depended largely on the culturing 
conditions of the pericytes. Although purified pericytes deprived of endothelial cells did not 
reveal a reexpression effect, pericytes that were kept in contact with endothelial cells were 
able to acquire a pAPN-positive phenotype, indicating that endothelial cells constitute an 
essential requirement for the in vitro reexpression of pAPN. Astrocytes, however, were 
insufficient in exerting any reexpression effect. 
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PCR, reverse transcriptase polymerase chain reaction; SDS, sodium dodecyl sulfate; sm, 
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smooth muscle; TGF- 1, transforming growth factor- 1; VEGF, vascular endothelial growth 
factor 

The blood-brain barrier (BBB) regulates the exchange of blood solutes with the interstitial 
cerebral fluid and is composed of a physical and metabolic barrier. The BBB consists of a 
microvascular endothelium with its cellular adjuncts (Reese and Karnovsky, 1967; 
Dermietzel, 1975; Crone and Levitt, 1984; Dermietzel and Krause, 1991). In recent years 
considerable efforts have been focused on models that mimic BBB conditions in vitro (Audus 
and Borchardt, 1987; Greenwood, 1991; Rubin et al., 1991; Joo, 1992; Abbott et al., 1992). 
The results of these experiments have strengthened the essential role of endothelial cells for 
BBB mechanisms. They have also provided evidence that endothelium-associated cells, like 
astrocytes and pericytes, are required for the establishment and maintenance of intrinsic BBB 
functions (Farrell et al., 1987; Maxwell et al., 1987, 1989; Meyer et al., 1990, 1991; Frey et 
al., 1991; Risau et al., 1992). 

Astrocytes, which tightly clasp cerebral microvessels by their endfeet, have been 
demonstrated to exhibit inductive capabilities on the formation and functional efficiency with 
respect to the tightness of the cerebral endothelium (Janzer and Raff, 1987), the most 
prominent physiologic feature of the intact BBB (Reese and Karnovsky, 1967; Stewart and 
Wiley, 1981; Janzer and Raff, 1987; Rutten et al., 1987). Furthermore, the expression of 
metabolic components of the BBB is suggested to be governed by regulatory influences 
provided by astrocytes. Prominent metabolic components of the BBB are the glucose 
transporter(s) (Glut-1) (Maxwell et al., 1989), alkaline phosphatase (Meyer et al., 1991; Roux 
et al., 1994), -glutamyl transpeptidase (Maxwell et al., 1987; Meyer et al., 1991; Mizuguchi 
et al., 1994; Roux et al., 1994), the low-density lipoprotein-receptor (Dehouck et al., 1994), 
the transferrin transporter system (Roberts et al., 1993), acetylcholinesterase (Pakaski and 
Kasa, 1992), and the Na-K-Cl-cotransporter (Sun et al., 1995). Recent findings, however, 
have led to a reconsideration of the role that astrocytes play in the process of BBB induction. 
For instance, the studies of Holash et al. (1993) substantiate the general concept that 
astrocytes exhibit significant effects that maintain or influence functional properties of the 
BBB, but they lack the ability to initially induce BBB formation. The simplistic view of a 
bilateral axis in BBB induction and maintenance involving exclusively astrocytes and 
endothelial cells has become debatable (see Dermietzel and Krause, 1991). 

Another cell type coming into focus in BBB research is the cerebral pericyte, a morphologic, 
biochemical, and physiologic heterogeneous cell population. Pericytes, which share a 
common basement membrane with the cerebral endothelium, are suggested to have 
phagocytotic potency (Cancilla et al., 1972; Jordan and Thomas, 1988), which operates as a 
"second line of defense" at the boundary between blood and brain (Farrell et al., 1987). 
Furthermore, pericytes are considered to be influential in the regulation of capillary blood 
flow (Le Beux and Willemot, 1980; Joyce et al., 1985a, 1985b; Herman and D'Amore, 1985). 
In peripheral tissues pericytes have been reported to provide (1) potential modulators of 
endothelial permeability (Imayama and Urabe, 1984), (2) stabilizing effects on microvessel 
walls (Nehls and Drenckhahn, 1993), and (3) promoting activity on angiogenic processes 
(Orlidge and D'Amore, 1987; Klagsbrun and D'Amore, 1991) and capillary sprouting 
(Verhoeven and Buyssens, 1988; Nehls et al., 1992, 1994). Evidence is also accruing that 
cerebral pericytes constitute a major component of the metabolic BBB by expressing specific 
enzymes, such as -glutamyl transpeptidase (Frey et al., 1991; Risau et al., 1992), or enzymes 
involved in neurotransmitter metabolism, like glutamyl aminopeptidase (Bausback et al., 
1988; Healy and Wilk, 1993; Song et al., 1993). 
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Consistent with these observations, we recently reported on the expression of a specific 
isoform of amino-peptidase N (CD 13) in cerebral pericytes (pAPN). The lack of pAPN 
expression in brain regions devoid of a tight endothelium, like the circumventricular organs, 
suggested that pAPN is a member of the metabolic complement of the BBB that is involved in 
neuropeptide degradation (Mizutani et al., 1993), i.e., APN has been suggested to be involved 
in the degradation of endogenous endorphins, like enkephalins (De la Baume et al., 1983). We 
also acquired evidence that pAPN responds to pathologic disturbances of the BBB (Kunz et 
al., 1995). 

In essence, cerebral pericytes are an important member of the cellular complex that 
constitutes the BBB. However, detailed data on the cell biology of this cell class of the BBB 
are still lacking. 

To gain a better insight into the cellular biologic properties of cerebral pericytes, we designed 
a method to purify pericytes of brain microvessels. By exploiting pAPN as a specific marker 
for cerebral pericytes, we found that (1) purified cerebral pericytes are unable to preserve their 
brain-specific phenotype in culture, as shown by loss of pAPN expression, (2) downregulation 
of pAPN occurs at the translational level, (3) (re)induction of pAPN can only be achieved in 
coculture with endothelial cells, (4) cultured primary astrocytes are insufficient to (re)induce 
the pericytic phenotype, and (5) (re)induction requires a soluble factor (or factors) provided 
by endothelial cells. 
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MATERIALS AND METHODS 

Antibodies and immunologic techniques 

A number of monoclonal and polyclonal antibodies were applied for the characterization of 
cell specificity under immunofluorescence conditions. The following antibodies were applied: 

Monoclonal antibodies. The antibody directed against pAPN was generated in our laboratory 
and has been extensively characterized (Krause et al., 1988; Kunz et al., 1994, 1995). 
Undiluted hybridoma supernatants were used for immunocytochemical detection as well as 
for solid-phase isolation (see below). Anti-ED1 (MCA 341), an antibody recognizing reactive 
cells of monocytic origin (macrophages) was purchased from Serotec (Wiesbaden, Germany) 
and applied in a dilution of 1:250. The anti-MUC 102 antibody, which is regarded to be 
specific for microglial cells (Gehrmann and Kreutzberg, 1991), was kindly provided by G. 
Kreutzberg (Max-Planck Institute of Psychiatry, Munich, Germany). The working solution of 
this monoclonal antibodies (mAb) was 1:700. Monoclonal antibodies against smooth muscle 
(sm)-actin and vimentin were purchased from Sigma (Munich, Germany) and Boehringer 
(Mannheim, Germany), respectively. The applied dilutions were 1:400 for anti-sm actin and 
1:150 for anti-vimentin. 

Polyclonal antibodies. For recognition of cerebral endothelial cells an antibody directed 
against the BBB-specific Glut-1 (dilution 1:50) was used. The anti-Glut-1 antibody was 
prepared and affinity-purified as described earlier (Wang, 1987; Dermietzel et al., 1992). An 
antibody against the factor VIII-related antigen (Dakopats, Hamburg, Germany) was applied 
in a dilution of 1:1,000 and served as a general marker for endothelial cells. Primary 
astrocytes were identified by the expression of glial fibrillary acidic protein (GFAP) by means 
of an anti-GFAP antibody (dilution 1:200; Sigma). 

http://www.nature.com/jcbfm/journal/v18/n11/full/9590478a.html#bib45
http://www.nature.com/jcbfm/journal/v18/n11/full/9590478a.html#bib12
http://www.nature.com/jcbfm/journal/v18/n11/full/9590478a.html#bib36
http://www.nature.com/jcbfm/journal/v18/n11/full/9590478a.html#bib36
http://www.nature.com/jcbfm/journal/v18/n11/full/9590478a.html#top
http://www.nature.com/jcbfm/journal/v18/n11/full/9590478a.html#bib34
http://www.nature.com/jcbfm/journal/v18/n11/full/9590478a.html#bib35
http://www.nature.com/jcbfm/journal/v18/n11/full/9590478a.html#bib21
http://www.nature.com/jcbfm/journal/v18/n11/full/9590478a.html#bib73
http://www.nature.com/jcbfm/journal/v18/n11/full/9590478a.html#bib17


Fluorescein isothiocyanate- (FITC) and Texas red-coupled secondary antibodies (Sigma) were 
used in a dilution of 1:400. 

Immunocytochemistry. For immunologic detection of cell-specific proteins, indirect 
immunocytochemistry was performed as described earlier (Kunz et al., 1994). In brief, cells 
were washed twice with 0.1 mol/L phosphate-buffered saline (PBS) to remove culture 
medium, followed by a brief fixation in absolute ethanol for 10 minutes at room temperature. 
After several brief washes with 0.1 mol/L PBS, nonspecific binding sites were saturated by 
incubation of the cells in 0.1 mol/L PBS containing 0.1% bovine serum albumin (BSA) and 
10% horse serum as additives. Blocking time was 30 minutes. For double immunostaining, 
cells were sequentially incubated with a monoclonal and a polyclonal primary antibody for 60 
minutes each at room temperature, followed by thorough rinsing with 0.1 mol/L PBS with 
0.1% BSA, and subsequent incubation with the FITC- or Texas red-coupled secondary 
antibodies, or both, in the dark for 20 minutes each at room temperature. After three 
additional washes with 0.1 mol/L PBS with 0.1% BSA, specimens were embedded in FITC-
Guard (Testog, Chicago, IL, U.S.A.) and subjected to immunofluorescence microscopy on an 
Axiovert 35 microscope (Zeiss, Oberkochen, Germany). 

Isolation of cells and cell culture procedures 

Cerebral microvascular cells were isolated as described earlier (Kunz et al., 1994). In brief, 
cells were obtained from the cerebral cortex of 8 to 10 rat brains (Wistar strain, 8 to 12 weeks 
old) by collagenase digestion (collagenase type CLS II; Seromed, Berlin, Germany) followed 
by a subsequent 50% Percollgradient (Pharmacia, Freiburg, Germany), and centrifuged at 
1,250g (4°C) for 10 minutes (Risau et al., 1992). The collected microvascular cells were 
washed twice with 0.1 mol/L PBS. The isolated cells were then used for cell culture as crude 
microvascular cell fraction (CMF) or further subjected to an additional purification step to 
isolate purified cerebral pericytes (see below). Samples of the CMF were seeded on poly-L-
lysine-precoated coverslips or cultured in plastic culture flasks (25 cm2) and maintained at 
37°C (5% CO2) in Dulbecco's modified Eagle's medium (DMEM; Sigma) supplemented with 
1% glucose, 10% fetal calf serum (Boehringer), 1% bovine retina extract (Risau et al., 1992), 
100 U/mL penicillin (Gibco, Eggenstein, Germany), 100 U/mL streptomycin (Gibco), 1 
mmol/L sodium pyruvate (Seromed), and 2 mmol/L glutamine (Gibco). Culture medium was 
changed three to four times weekly. Under these culture conditions microvascular cells 
reached confluency within 10 to 20 days. All cultures used for experimentation were from the 
first to fourth passages. 

Purification of cerebral pericytes was achieved by a solid-phase technique making use of 
immunomagnetic beads. For purification microvascular cells were prepared as described 
above. The collected fraction was then resuspended in 50 L DMEM supplemented with 
4.5% glucose. Dissociation was achieved with a dissociation solution (Sigma), used in a 
concentration of 4 mL per 50 L of cell suspension, by repeated tituration with a glas pipette 
at room temperature. After centrifugation (160g, 5 minutes), samples were incubated with 500 

L of the undiluted supernatant of anti-pAPN antibody for 30 minutes at room temperature, 
washed twice with DMEM with 4.5% glucose, and finally resuspended in another 500 L 
DMEM with 4.5% glucose. A Dynabead M-450 solution (Dynal, Oslo, Norway) coated with 
goat anti-mouse IgG was added, achieving a total concentration of 107 beads/mL cell 
suspension. After incubation for 45 minutes at 4°C under constant shaking, samples were 
placed in a Dynal magnet (MPC; Dynal) to separate immunoadsorbed cells. Separation time 
was 2 minutes. Supernatants containing free microvascular cells not immunoadsorbed to the 
Dynabeads were soaked off and further used as mixed culture samples (MCS). The purified 
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pericytes were collected, washed twice with DMEM with 4.5% glucose, and seeded into 
plastic culture dishes (25 cm2). Both the purified pericyte cultures (PPC) and MCS, which 
consist chiefly of microvascular fragments and free unbound pericytes, were grown under the 
same culture conditions as described above for CMF. 

Cerebral astrocytes were isolated from cerebral cortices of 1- to 2-day-old rats (Wistar strain) 
for coculture with PPC and MCS as described previously (Dermietzel et al., 1991). To 
achieve highest purity of astrocytic cell cultures (>99%), contaminating macrophages and 
oligodendrocytes were separated by a series of continuous shaking for 6, 18, and 24 hours. 
Contaminating cells were removed by changing the culture medium after each agitation step. 
For coculture experiments first passage astrocytes were used. 

A cerebral endothelial cell line bEnd.3 (Montesano et al., 1990; kindly provided by D. 
Männel, University of Regensburg) was further used for coculture experiments. The bEnd.3 
cells were cultured at 37°C (5% CO2) in DMEM containing 4.5% glucose and 5% fetal calf 
serum in plastic culture flasks. After acquiring confluency (1 to 2 days after seeding), bEnd.3 
cells were passaged for coculturing with microvascular cell fragments or purified pericytes. 

Coculture conditions. Primary astrocytes and bEnd.3 were subjected to coculture with PPC 
and MCS. 

Coculturing was performed under the following conditions. First, conditions with unrestricted 
physical contact were achieved by seeding PPC or MCS on a subconfluent layer of astrocytes 
(alternatively, bEnd.3 cells). Second, culture conditions with limited cell-cell contact were 
realized using perforated polycarbonate membranes (pore size approximately 1 m; Becton-
Dickinson, Lincoln Park, NJ, U.S.A.). Membranes were loaded on one side with the feeder 
layer (astrocytes or bEnd.3 cells, respectively), which was then cultured to confluency, 
subsequently turned around and further loaded with purified pericytes or MCS. Membranes 
were fixed in a special sheath-holder device (Minucells; Minuth et al., 1992) throughout the 
experiments. Third, cocultures with exclusion of physical contact were obtained by cultivation 
of cells on both sides of glass coverslips in the same sheath-holder device. 

Preparation of cerebral microvessels for Western blotting. To achieve sufficient amounts of 
pAPN from cerebral microvessels for Western blotting vessels were isolated as described by 
Mrsulja et al. (1976). This protocol achieves a higher concentration of pAPN than the Percoll 
method described above. All steps of isolation were performed at 4°C. In brief, cerebrum of 
one adult rat (Wistar strain) was homogenized in 20 volumes of Ringer's solution with 1% 
BSA and 10 mmol/L HEPES, pH 7.4, in a glass homogenizer with a tightfitting pestle (10 
strokes for each sample). After homogenization, the samples were centrifuged at 1,500g for 
15 minutes. The pellets were resuspended in Ringer's solution with 1% BSA and centrifuged 
for another 10 minutes at 1,500g. The collected pellets were suspended in 10 mL of 0.25 
mol/L sucrose solution, layered over a two-step discontinuous sucrose gradient of 1.0 mol/L 
and 1.75 mol/L sucrose (wt/vol; 12 mL each), and centrifuged at 58,000g for 30 minutes in a 
Beckman ultracentrifuge (rotor SW-28). The interphase between the 1.0 mol/L and 1.75 
mol/L sucrose was collected and checked for microvessel purity by phase-contrast 
microscopy. 

Biochemical and molecular biologic techniques 

Preparation of kidney brush-border membranes. Preparation of the brush-border membranes 
from rat kidney proximal tubules was done as described by Biber et al. (1981). All steps were 
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performed at 4°C. Cortices of two kidneys from one adult rat (Wistar strain, 3 to 6 months 
old) was homogenized and centrifuged for 15 minutes at 1,800g. The supernatant was 
centrifuged for a further 30 minutes at 22,300g. Collection of pellets and homogenization and 
centrifugation steps were repeated twice, as described above. The pellets of the final 
centrifugation step were highly enriched in brush-border membranes. 

Polyacrylamide gel electrophoresis and Western blotting. Samples of kidney brush-border 
membranes, homogenates of freshly isolated cerebral microvessels, and cultivated PPC were 
separated on a one-dimensional continuous 7.5% sodium dodecyl sulfate (SDS)-
polyacrylamide gel. Proteins were transferred to a polyvinylidene difluoride membrane (0.45 

m; Millipore, Eschborn, Germany) by the semidry blotting method. For immunoincubation, 
the membrane was blocked in PBS with 0.05% Tween 20 at 4°C overnight. The incubation 
with the monoclonal anti-pAPN antibody was performed at room temperature for 2.5 hours, 
followed by the secondary antibody (anti-mouse IgG antibody coupled to 10-nm gold beads; 
Aurion, Wageningen, the Netherlands) overnight. Bands labeled with immunogold were 
visualized by silver enhancement according to the recommendation of the manufacturer 
(Aurion). 

Glycosidase digestion. Kidney brush-border membranes were digested with endoglycosidase 
F (Boehringer) to evaluate binding efficiency of the mAb anti-pAPN to the glycosylated and 
nonglycosylated forms of APN. For this purpose 5 L of washed brush-border membranes 
were solubilized in 50 L 1% SDS sample buffer. After heating the brush-border membranes 
at 100°C for 1 minute in 1% SDS sample buffer and removing the insoluble residue by 
centrifugation, the extract was adjusted to 25 L endo F buffer (50 mmol/L potassium 
phosphate, 1% N-octylglycoside, 25 mmol/L EDTA, pH 6.5). After a further incubation at 
100°C for 1 minute and cooling at 37°C, 250 mU endoglycosidase F were added. The reaction 
mixture was then incubated for 60 minutes at 37°C before gel electrophoresis. Gels of treated 
and untreated fractions were subjected to Western blotting (see above). 

RNA isolation. Total RNA was isolated from purified pericytes and from microvascular cells 
(42 days in vitro, third passage, one culture flask of 25 cm2, each) according to Chomczynski 
and Sacci (1987) with slight modification. In brief, cell lysis was performed using TRIzol 
reagent (total RNA isolation reagent; GibcoBRL, Berlin, Germany). After addition of 
chloroform and centrifugation (15 minutes, 12,000g, 4°C), the aqueous phase containing the 
total RNA was aspirated and precipitated in isopropyl alcohol. 

Reverse transcriptase polymerase chain reaction. Total RNA from PPC and MCS was used 
as template for amplifying a fragment of pAPN. Primer sets for pAPN cDNA amplification 
and Reverse transcriptase polymerase chain reaction (RT-PCR) conditions were identical to 
those described recently (Kunz et al., 1994). 

Southern blotting. For Southern blotting, an agarose gel (2%) was loaded with 20 ng of each 
RT-PCR cDNA sample obtained from purified pericytes or MCS. After electrophoresis, the 
cDNA was blotted onto nitrocellulose membranes according to standard techniques 
(Sambrook et al., 1989). The membranes were then hybridized overnight at 42°C to a 
digoxygenin (DIG; Boehringer)-labeled pAPN cDNA probe (Kunz et al., 1994). Final washes 
were performed under high stringency conditions in 0.1  saline sodium citrate buffer with 
0.1% SDS at 65°C. The hybridized DIG-labeled complex was detected by means of an anti-
DIG antibody coupled to alkaline phosphatase (Boehringer). 
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Nonradioactive in situ hybridization. For in situ hybridization PPC grown on poly-L-lysine-
coated coverslips (50 days in vitro, second passage) were fixed in 0.1 mol/L PBS with 4% 
formaldehyde for 60 minutes at 4°C and subsequently postfixed for 10 minutes at -20°C in 
95% ethanol-5% glacial acetic acid. After rinsing with 0.1 mol/L PBS with 0.1 mol/L glycine, 
cells were equilibrated in proteinase-K buffer (PKB; 50 mmol/L EDTA, 100 mmol/L Tris-
HCl, pH 8.0) for 10 minutes, followed by protein digestion with proteinase K (3 g/mL PKB; 
Sigma) for another 20 minutes at 37°C under gentle agitation. Proteinase K activity was 
stopped by postfixation in 0.1 mol/L PBS with 4% formaldehyde (10 minutes at room 
temperature), and cells were washed at room temperature in 0.1 mol/L PBS with 0.1 mol/L 
glycine and diethyl pyrocarbonate-treated water (DEPC-H2O; 0.02% DEPC; Sigma). 
Acetylation of the samples was achieved by incubation in 0.1 mol/L triethanolamine, pH 8.0, 
supplemented with 0.25% acidic acid anhydride for 10 minutes, followed by two further 
washes with DEPC-H2O. Before prehybridization, cells were dehydrated in an ascending 
series of ethanol baths (70% to 100%), followed by subsequent air drying. For 
prehybridization, specimens were incubated in a humid chamber containing 50% formamide, 
0.3 mol/L sodium chloride, 20 mmol/L Tris, pH 8.0, 1 mmol/L EDTA, 10% dextran sulfate, 
1  Denhardt's solution, and 500 g/mL yeast tRNA for 1 to 2 hours at 42°C. Thereafter the 
probes were washed with DEPC-H2O, dehydrated in an ascending series of ethanol baths 
(50% to 100%), and air dried. Hybridization was performed overnight in a humid chamber at 
42°C, using 200 pg/mL of DIG-labeled anti-sense cRNA probes ( 372 bp) (in 
prehybridization mixture) matching to the mRNA of APN. Control experiments were 
performed by application of corresponding DIG-labeled sense cRNA probes. 

After hybridization, cells were washed thoroughly with 2  SSC (0.3 mol/L NaCl, 30 mmol/L 
citrate buffer, pH 7.0) and 0.1  SSC at room temperature. To remove nonhybridized cRNA, 
specimens were incubated with 10 mmol/L Tris and 0.5 mol/L NaCl containing ribonuclease 
A (6 g/mL; Boehringer) for 10 minutes at 37°C. Cells were finally rinsed three times in 0.1  
SSC at 55°C and one time in 0.1  SSC at room temperature. 

For immunodetection of the DIG-labeled hybridization products, specimens were washed 
twice in 0.1 mol/L PBS. Nonspecific binding sites were saturated with 0.1 mol/L PBS with 
1% BSA, and cells were incubated for 2 hours with a polyclonal anti-DIG antibody (1:50 in 
0.1 mol/L PBS with 0.2% BSA and 0.1% Triton 100) (Boehringer). Immunostaining was 
performed by means of a FITC-coupled secondary antibody as described above. 

Top of page  

RESULTS 

Isolation and characterization of cerebral microvascular cells 

The history of a particular cell type is considered to be of primary importance in the process 
of dedifferentiation or redifferentiation events under in vitro conditions (Koechlin et al., 
1991). To achieve a reproducible collection of pericytes, we first characterized fractions of 
these cells that differed significantly in their cell composition. 

Crude microvascular cell fraction. Crude microvascular cell fraction was obtained by 
isolating microvessels from cortical rodent brains after subjecting them to collagenase 
treatment (Risau et al., 1992). By applying a number of different cell-specific antibodies, the 
CMF was determined to consist of a collection of endothelial cells (factor VIII-related 
antigen-positive; Fig. 1A), pericytes (pAPN- and sm-actin-positive; Fig. 1B,C), and to a 
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minor degree, contaminating astrocytes (GFAP-positive; Fig. 1D). Microglial cells (MUC 
102-positive; Fig. 1E) and macrophages (ED1-positive; Fig. 1F) were also found in varying 
amounts. In addition, the CMF contained small fragments of intact microvessels that resisted 
collagenase digestion (not shown). When grown under supplemented culture conditions (10% 
BSA and 1% bovine retina extract), pericyte proliferation was favored over the other cell 
species. A uniform pericyte-like cell type was achieved after 14 days in culture (Swinscoe and 
Carlson, 1992). This cell type was characterized by intracellular fibers of sm-actin (stress 
fibers; see Fig. 1C) and the formation of multicellular nodules (Schor and Schor, 1986; Schor 
et al., 1990). Because endothelial cells are inhibited in growth by proliferating pericytes 
(Orlidge and D'Amore, 1987; Swinscoe and Carlson, 1992), the formation of endothelial 
"cobblestone-like" monolayers was rare and transient in CMF. 

Figure 1.

 

Immunofluorescent characterization of the crude microvascular cell fraction (CMF) after 20 
days in vitro. A cluster of factor VIII-related antigen (F-VIII ra)-positive endothelial cells in 
primary culture are shown forming a typical contact-inhibited monolayer (a). Single pericyte 
aminopeptidase N (pAPN)-positive cells (b) and some smooth muscle (sm)-actin-expressing 
cells (c) are shown. Astrocytes staining positively for glial fibrillary acidic protein (GFAP) 
are shown (d). Contaminating microglial cells and macrophages are detected with antibodies 
directed against MUC 102 (e) and ED1 (f). Scale bar = 50 m. Original magnification 350. 

Full figure and legend (242K)  
 
 

Purified pericyte cultures. To obtain purified cultures of cerebral pericytes, we designed a 
solid-phase isolation technique using our mAb directed against the pericyte-specific enzyme 
pAPN. The isolation protocol consisted of immunoadsorption of antibody-labeled pericytes to 
immunomagnetic beads (for detail see Materials and Methods). The samples of 
immunoadsorbed cells contained a small number of individual pAPN-positive cells (Fig. 2a 
and Fig. 3a) and few microvascular segments (Fig. 2b and Fig. 3b). Contaminations with 
macrophages, free microglial cells, or astrocytes, as described above for the CMF, were not 
detected in PPC. Microvascular segments did not attach to the tissue culture supports and 
were lost after the first passage. After 15 to 40 days in culture, purified pericytes had grown in 
small islets (Fig. 2C) reaching area-restricted confluency (Fig. 2D) with the formation of 
nodules (Fig. 2E). The pericytic plaques resembled in both cellular morphology and their 
growth pattern the pericytes obtained from the CMF. All purified pericytes expressed sm-
actin (Fig. 2F) and vimentin (Fig. 2G). 

Figure 2.
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Isolation and culture of purified cerebral pericytes (PPC) achieved after separation by 
immunomagnetic beads. Acute isolated single cells (a) and small capillary fragments (b) are 
immunobound to Dynabeads (arrowheads). (c) Phase-contrast microscopy indicates that the 
majority of isolated cells (3 days after plating) in PPC have adsorbed immunobeads to their 
surface. Arrowheads point to immunocoupled beads. In confluent culture (15 days after 
plating) PPC reveal a characteristic irregular morphology and overlapping processes (d). 
Purified pericyte cultures (25 days after plating) exhibit noticeable retraction and form 
numerous multicellular nodules (e). Immunofluorescent localization of cytoskeleton proteins 
sm-actin (f) and vimentin (g) in PPC (7 days after plating). See Fig. 1 for other abbreviations 
used. Scale bar = 50 m. Original magnification a and b, 550; c-e, 175; f and g, 350. 

Full figure and legend (279K)  
 

Figure 3.

 

Immunofluorescent staining of PPC. Pericyte aminopeptidase N was expressed by acutely 
isolated pericytes (a) and microvascular fragments (b). Loss of pAPN immunoreactivity was 
observed when cells became adherent within 3 days of culture (c); (d) phase-contrast of (c). 
Arrowheads (a-c) depict fluorescent Dynabeads. (e) Cells (asterisks) from mixed culture 
samples (MCS) in long-term culture (>40 days) were positive for pAPN. Arrows point to 
nonspecific staining in (e). See Fig. 1 and Fig. 2 for other abbreviations used. Scale bar = 50 
m. Original magnification a and b, 550; c-e, 350. 

Full figure and legend (228K)  
 
 

Mixed culture samples. The MCS consisted of the supernatants obtained after solid-phase 
adsorption of pericytes. In contrast to the PPC, the MCS revealed endothelial cells and 
contaminating macrophages, as well as microglial cells and very few astrocytes, but had in 
general a lower percentage of pericytes than the crude CMF (not shown). 

http://www.nature.com/jcbfm/journal/v18/n11/fig_tab/9590478f2.html
http://www.nature.com/jcbfm/journal/v18/n11/fig_tab/9590478f3.html
http://www.nature.com/jcbfm/journal/v18/n11/full/9590478a.html#fig1
http://www.nature.com/jcbfm/journal/v18/n11/fig_tab/9590478f2.html#figure-title
http://www.nature.com/jcbfm/journal/v18/n11/fig_tab/9590478f3.html#figure-title
http://www.nature.com/jcbfm/journal/v18/n11/full/9590478a.html#fig1
http://www.nature.com/jcbfm/journal/v18/n11/full/9590478a.html#fig2
http://www.nature.com/jcbfm/journal/v18/n11/fig_tab/9590478f3.html#figure-title


pAPN protein expression is downregulated in vitro 

The two cell fractions (PPC and MCS), which differed significantly in their cellular 
composition, were then exploited for studies of pAPN expression. 

Expression of pAPN was high in acute isolated pericytes (Fig. 3A,B), as revealed by 
immunocytochemistry. In PPC, 2 to 5 days after plating, pAPN protein expression was 
completely downregulated as indicated by loss of pAPN immunoreactivity (Fig. 3C,D). In 
MCS, however, pAPN expression was still preserved at a lower level. Singular pAPN-positive 
cells were found in MCS even after long-term culture (>40 days; Fig. 3E). Expression and 
downregulation of pAPN appeared to be independent of the substrate used for both cell 
culture fractions (not shown). The downregulation effect was also confirmed by Western blots 
of freshly isolated microvessels and PPC (11 days in vitro). Purified pericyte cultures revealed 
no immunodetectable staining of pAPN as compared with the microvessel fraction (Fig. 4A). 

Figure 4.

 

(a) Immunoblots of kidney brush-border membranes (lane 1), cerebral microvessels (lane 2), 
and PPC after 11 days in vitro (lane 3). Immunoincubation with anti-pAPN antibody yielded a 
single band of 140 kDa in brush-border membranes and cerebral microvessels, but not in PPC 
(lane 3). (b) Pericyte amino-peptidase N was sensitive to endoglycosidase F digestion. 
Immunoblot of kidney brush-border membrane with anti-pAPN (lane 1) displays a single 
band of 140 kDa. Lane 2 exhibits a shift of the band of kidney brush-border membranes after 
endoglycosidase F digestion. Numbers at left refer to the molecular mass standards (in kDa). 
Lanes were loaded with 20 g of protein each. 

Full figure and legend (40K)  
 
 

To address the question of which level the downregulation of pAPN occurred on, we 
performed RT-PCR with subsequent Southern blotting of the pAPN amplicon (Fig. 5A) and 
in situ hybridization (Fig. 5B,C) to detect pAPN mRNA. Surprisingly both approaches 
revealed that mRNA of pAPN is still detectable in PPC and MCS even in long-term cultures 
(40 to 50 days in vitro, two passages). 

Figure 5.
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Detection of pAPN mRNA in long-term cultures of cerebral pericytes (>40 days). Southern 
blot analysis was performed using a digoxygenin-labeled reverse transcriptase polymerase 
chain reaction (RT-PCR) fragment amplified from RNA of acute isolated cerebrovascular 
cells (a). Lane 1 shows the hybridization product with the pAPN amplicon isolated from PPC. 
The band at about 370 bp documents the existence of pAPN cDNA in PPC in spite of the fact 
that the protein is no longer detectable (see Fig. 3c). Lane 2 exhibits the hybridization product 
from MCS. Lane 3 displays the positive control after hybridization of the purified pAPN 
amplicon with itself. Positions of the cDNA fragment are indicated on the left side in 
kilobases. In situ hybridization of PPC was performed using an anti-sense cRNA probe for 
pAPN (b). Hybridized probes were visualized with a fluorescein isothiocyanate (FITC)-
coupled secondary antibody. Strong reaction product of the cRNA-antidigoxygenin hybrid is 
prevalent in the perinuclear region. (c) Negative control after application of corresponding 
digoxygenin-labeled sense cRNA probe is shown. See Fig. 1, Fig. 2 and Fig. 3 for other 
abbreviations. Scale bar = 50 m. Original magnification b and c: 350. 

Full figure and legend (166K)  
 
 

These findings strongly indicate that the regulation of pAPN expression is most likely to 
occur at the posttranscriptional level. 

One reasonable possibility of posttranscriptional modification during tissue culturing is a 
change of the glycosylation pattern that is no longer detectable by the mAb. To exclude this 
possibility we performed endoglycosidase F digestion on kidney brush-border fractions and 
subjected the digested and undigested samples to Western blotting with the mAb. Kidney 
brush-border preparations were used to achieve a sufficient amount of digestible APN. As can 
be seen in Fig. 4B, glycosidase F treatment leads to an expected shift in APN migration but 
does not exert a loss of binding of the mAb. 

Cocultures 

Astrocytes have been documented to possess an inductive potency on the expression of BBB-
specific features in cultured endothelial and pericytic cells (Maxwell et al., 1987, 1989; 
Cecchelli et al., 1992). We therefore investigated the effect of coculturing PPC and MCS with 
astrocytes on pAPN expression. When both preparations were kept in coculture with first-
passaged astrocytes, no effect on pAPN expression in pericytes was achieved. In particular, 
PPC remained negative after 6 days of coculture (Fig. 6A,B), and MCS did not show any 
change in their low-level expression of pAPN (Fig. 6C–E). The lack of reinduction of pAPN 
expression in astrocytic cocultures was independent of the culture condition. Neither intimate 
contact in mixed cultures when both cell types were plated on one side of a glass support nor 
cultivation with limited cell-cell contact when cells were grown on separate sides of a 

http://www.nature.com/jcbfm/journal/v18/n11/fig_tab/9590478f5.html
http://www.nature.com/jcbfm/journal/v18/n11/full/9590478a.html#fig3
http://www.nature.com/jcbfm/journal/v18/n11/full/9590478a.html#fig1
http://www.nature.com/jcbfm/journal/v18/n11/full/9590478a.html#fig2
http://www.nature.com/jcbfm/journal/v18/n11/full/9590478a.html#fig3
http://www.nature.com/jcbfm/journal/v18/n11/fig_tab/9590478f5.html#figure-title
http://www.nature.com/jcbfm/journal/v18/n11/full/9590478a.html#fig4
http://www.nature.com/jcbfm/journal/v18/n11/full/9590478a.html#bib38
http://www.nature.com/jcbfm/journal/v18/n11/full/9590478a.html#bib39
http://www.nature.com/jcbfm/journal/v18/n11/full/9590478a.html#bib8
http://www.nature.com/jcbfm/journal/v18/n11/full/9590478a.html#fig6
http://www.nature.com/jcbfm/journal/v18/n11/full/9590478a.html#fig6


polycarbonate filter led to a reappearance of pAPN immunodetectability (not shown). 
Apparently, pAPN expression in cerebral pericytes is not under the control of astrocytic 
factors. 

Figure 6.

 

Cocultures of PPC (a and b) and MCS (c-e) with first-passaged astrocytes. (a) A pericyte 
from PPC (asterisk) grown on the astrocytic monolayer for 3 days reveals no pAPN 
expression. (b) shows the corresponding GFAP-stained field. Arrowheads point to scattered 
Dynabeads. (c) Coculture of pericytes from MCS with astrocytes express low levels of pAPN 
(arrowhead) that do not differ from non-coculture conditions (see Fig. 3e). (d) Corresponding 
GFAP immunostaining of (c). (e) Phase-contrast view of the same field depicts the 
morphology of the marked pericyte. Nonspecific autofluorescence is indicated by arrows in 
(c). See Fig. 1, Fig. 2 and Fig. 3 for other abbreviations. Scale bar = 50 m. Original 
magnification 350. 

Full figure and legend (218K)  
 
 

Alternatively, we used the brain endothelial cell line bEnd.3 for cocultures. In contrast to the 
astrocytic co-cultures, bEnd.3 cells exhibited a significant effect on pAPN reexpression. After 
40 days of culture, when MCS were transferred to socio-culture with bEnd.3 cells, a 
significant increase in the intensity of pAPN immunostaining was achieved (Fig. 7A,B). 
Frequency of pAPN-positive cells also increased by a factor of 10 as compared with the void 
MCS. To assess whether this effect was attributable to a humoral factor produced by the 
bEnd.3 cells, we cultured MCS in bEnd.3-conditioned medium. Conditioning of the medium 
was performed for 3 days. When MCS were cultured in the conditioned medium, the same 
effect was achieved as under coculture conditions (Fig. 7C,D). 

Figure 7.
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Effect of cocultures of MCS (a-c) with the cerebral endothelial cell line bEnd.3 and after 
treatment with a bEnd.3-conditioned medium (d). (a) Pericytes originating from MCS display 
increased pAPN immunoreactivity. (b) Same field as (a) double-immunolabeled with anti-
glucose transporter (Glut-1) antibody to visualize bEnd.3 cells. (c) Effect of coculturing MCS 
and bEnd.3 cells for 2 days without physical cell contact. Cells were seeded on both sides of a 
coverslip. (d) Pericytes of the MCS treated with bEnd.3-conditioned medium. In all cases 
significantly higher levels of pAPN expression were achieved as compared with non-
coculture conditions of MCS (see Fig. 3e). (e) Pericytes from PPC (asterisks) cocultured with 
bEnd.3 do not reveal reexpression of pAPN. (f) Corresponding Glut-1 staining of bEnd.3 
cells. Arrows point to nonspecific staining. See Fig. 1, Fig. 2 and Fig. 3 for other 
abbreviations. Scale bar = 50 m. Original magnification 350. 

Full figure and legend (231K)  
 
 

Finally, we evaluated whether the in vitro history of the pericytes is essential for the humoral 
reinducibility of pAPN. For this purpose PPC were cocultured with bEnd.-3 cells. In 
cocultured pericytes deprived of endothelial cells no expression of pAPN was obtained (Fig. 
7E,F). We therefore consider the permanent presence of coisolated cells, presumably 
endothelial cells, in the MCS responsible for the latent inducibility of pAPN expression in 
pericytes. 

Top of page  

DISCUSSION 

Evidence is accruing that the BBB is functionally and developmentally constituted by a 
multicellular complex involving endothelial cells as well as astrocytes, pericytes, and neurons, 
and that cooperative interaction among these cells is required to guarantee the functional 
integrity of the BBB (Dermietzel and Krause, 1991). This cooperation becomes most apparent 
when the maturation of the BBB during brain development is considered. 

Morphogenetic factors required for the establishment of blood-brain barrier features 

In the embryonal and postnatal brain, maturation of the BBB is considered to be guided by 
inductive and permissive interactions between pluripotent invading endothelial cells (Bär, 
1980) and its neuroectodermal environment (Risau, 1995; Stewart and Wiley, 1981). 
According to this paradigm, several studies revealed a differentiation of BBB features and the 
onset of brain-specific endothelial protein expression concurrent with the differentiation of the 
brain (Qin and Sato, 1995; Dermietzel et al., 1992; Risau et al., 1986a, 1986b). Apparently, 
the final acquisition of the BBB depends on a morphogenetic program that involves the 
cooperation of several cellular components. Information on the molecular factors participating 
in these processes are rare but a recent example dealing with the expression of the vascular 
endothelial growth factor-2 (VEGFR-2) receptor provides support for the idea that a temporal 
morphogenetic regimen governs BBB maturation. Although the expression of VEGFR-2 is 
high during brain angiogenesis, which necessitates the potent mitogenic activity of VEGF, the 
receptor density is downregulated when BBB maturation is initialized (Plate et al., 1994), a 
necessary prerequisite for the acquisition of BBB tightness because VEGF is known to be a 
vascular permeability factor (Millauer et al., 1993; Ferrara et al., 1992). 

http://www.nature.com/jcbfm/journal/v18/n11/full/9590478a.html#fig3
http://www.nature.com/jcbfm/journal/v18/n11/full/9590478a.html#fig1
http://www.nature.com/jcbfm/journal/v18/n11/full/9590478a.html#fig2
http://www.nature.com/jcbfm/journal/v18/n11/full/9590478a.html#fig3
http://www.nature.com/jcbfm/journal/v18/n11/fig_tab/9590478f7.html#figure-title
http://www.nature.com/jcbfm/journal/v18/n11/full/9590478a.html#fig7
http://www.nature.com/jcbfm/journal/v18/n11/full/9590478a.html#fig7
http://www.nature.com/jcbfm/journal/v18/n11/full/9590478a.html#top
http://www.nature.com/jcbfm/journal/v18/n11/full/9590478a.html#bib15
http://www.nature.com/jcbfm/journal/v18/n11/full/9590478a.html#bib3
http://www.nature.com/jcbfm/journal/v18/n11/full/9590478a.html#bib3
http://www.nature.com/jcbfm/journal/v18/n11/full/9590478a.html#bib57
http://www.nature.com/jcbfm/journal/v18/n11/full/9590478a.html#bib69
http://www.nature.com/jcbfm/journal/v18/n11/full/9590478a.html#bib55
http://www.nature.com/jcbfm/journal/v18/n11/full/9590478a.html#bib17
http://www.nature.com/jcbfm/journal/v18/n11/full/9590478a.html#bib58
http://www.nature.com/jcbfm/journal/v18/n11/full/9590478a.html#bib54
http://www.nature.com/jcbfm/journal/v18/n11/full/9590478a.html#bib42
http://www.nature.com/jcbfm/journal/v18/n11/full/9590478a.html#bib19


With respect to the cellular entities primarily involved in BBB induction, astrocytes have been 
considered to represent the key cellular component, both in situ (Janzer and Raff, 1987) and in 
vitro (see introduction). However, recent investigations have challenged the simplistic view of 
astrocytic induction of the BBB. Immature neuroepithelial cells or glial progenitor cells are 
now considered to be responsible for the initiation of BBB development (Holash et al., 1993). 

In this context, the role of pericytes in BBB differentiation and establishment should be 
reconsidered. Recent in vitro studies have shown that pericytes and endothelial cells of CNS 
origin have mutual influence on each other's replicative and biosynthetic behavior. Retinal 
capillary endothelial cells, for example, secrete a heparinbinding factor that promotes pericyte 
proliferation (Swinscoe and Carlson, 1992). On the other hand, coculturing endothelial cells 
with pericytes results in the activation of a latent form of transforming growth factor- 1 
(TGF- 1) and in the subsequent suppression of endothelial cell growth (Orlidge and 
D'Amore, 1987). However, TGF- 1 also increases endothelin-1 expression in vascular 
endothelium, which in turn operates as a pericytic mitogen and causes contraction of pericytes 
(Chakravarthy et al., 1992). These results suggest complex biologic feedback mechanisms 
between endothelial cells and pericytes. 

Cerebral pericytes, like endothelial cells, are substituted with a specific set of proteins that are 
functionally involved in the enzymatic component of the BBB. Aminopeptidase A (Healy and 
Wilk, 1993; Song et al., 1993), -glutamyl transpeptidase (Risau et al., 1992), and pAPN 
(Kunz et al., 1994) are well-studied representatives of the pericytic enzymatic barrier, which 
is primarily involved in proteolytic activities. 

Pericyte aminopeptidase N has recently been revealed to be a late BBB marker in rodent brain 
development occurring around embryo day 18 of brain angiogenesis (Dermietzel and Krause, 
1991). Thus, the final establishment of the pericytic BBB feature can be considered to 
succeed in most of the endothelial BBB components, in particular, in the achievement of 
endothelial tightness (Dermietzel and Krause, 1991; Bauer et al., 1992). 

In vitro expression of pAPN requires a soluble endothelial factor and depends on 
coculturing conditions 

To gain more information on the inductive mechanisms involved in the expression of this 
prominent BBB enzyme, we studied the expression of pAPN under various culture conditions. 

Downregulation of pAPN occurred within 2 to 3 days when pericytes became adherent. 
However, as shown by RT-PCR and subsequent Southern blotting, mRNA for pAPN 
remained detectable even in long-term cultures. This finding strongly suggests a 
posttranscriptional regulation for pAPN expression in vitro. One reasonable explanation for 
the loss of detectability of pAPN is a stress-induced switch in the glycosylation pattern of 
pAPN (O'Connell et al., 1990), resulting in a modified isoform that is no longer accessible to 
our mAb. 

However, this possibility could be ruled out by glycosidase treatment of an APN-enriched 
membrane fraction. Kidney cells of the proximal tubules that have been shown to express the 
same isoform of APN (Kunz et al., 1994; Watt and Yip, 1989) showed no loss of binding of 
the mAb after glycosidase digestion when subjected to Western blotting. These findings are 
indicative for a persistent recognition of the pAPN epitope by the mAb. It seems therefore 
more likely that APN gene expression is controlled by posttranscriptional regulation 
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mechanisms, as has been shown recently for the same enzyme in T lymphocytes, natural killer 
cells, and permanently growing tumor cells (Wex et al., 1997). 

By using coculture systems of purified pericytes with both primary astrocytes and 
immortalized endothelial cells, we further examined the possible inductive and modulating 
effects of cellular components on pAPN expression. The most important finding of these 
experiments revealed that pAPN expression is enhanced by one or more soluble endothelial 
factors. Interestingly, this inductive effect depended on the socio-culture conditions of the 
pericytes. Only when mixed pericytic cultures were grown in coculture with endothelial cells 
could pAPN expression be significantly enhanced by endothelial cell-conditioned medium. 
Purified pericytes grown in complete isolation from endothelial cells revealed no pAPN 
reexpression potency at all. Although primary astrocytes from neonatal rat brains have been 
described to induce various endothelial BBB features in vitro (see above), we found no effect 
on pAPN expression in our cell culture model. A reasonable explanation for this effect is that 
the differentiation program of pericytes is under control of endothelial cells and, moreover, 
that a deprivation of pericytes from this supportive "string" leads to an irreversible loss of 
pericytic differentiation potency. Thus, our experimental design provides stringent in vitro 
evidence that BBB differentiation requires the cooperation of different vascular cellular 
components and that the achievement of functionally differentiated cerebral pericytes is 
closely related to endothelial cells. 
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